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1: Introduction

� In every branch of knowledge, roughly every ten to fifteen years,

you see a publication in a journal or a conference that creates

what’s referred to as a paradigm shift in the community. [The phrase

“paradigm shift” was coined by the philosopher Thomas Kuhn in his highly influential book “The Structure of

Scientific Revolutions” that was published in 1962.] In Computer Vision, the following

publication falls in that category:

“Stereo Processing by Semiglobal Matching and Mutual
Information” by Heiko Hirschmüller, IEEE-PAMI, 2008.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4359315

� Hirschmüller provided a beautiful solution — a solution that

actually works in real-world applications — to a very difficult

problem: The problem of assigning disparity labels to the pixels in

stereo imaging.

� From a purely algorithmic standpoint, what Hirschmüller gifted to

the humanity was a computationally efficient polynomial-time

approximation to an NP-Hard problem in combinatorial

optimization.
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� Given a pair of rectified images — a chosen reference image and

the other image — you want to estimate the disparity to be

associated with each pixel in the reference image based on which

pixel it best matches with in the other image. For rectified

cameras, the disparity is the distance between the column index

values for the pixel in the reference image and its corresponding

pixel in the other image.

� When measured as described above, the disparities are simply

integer values. In many applications, one can usually set bounds,

[dmin, dmax], in which to search for the corresponding pixel in the

other image.

� The numeric nature of the disparities might cause one to think of

a convex-optimization based approach for figuring out the best

values for the disparities at each pixel in the reference image. As

it turns out, the problem does not lend itself to that sort of

optimization. What it does lend itself to is combinatorial

optimization in which we think of each disparity value as a

possible label for a pixel from a set of known labels as determined

by the the set of integers in the range [dmin, dmax]. The

combinatorial optimization is carried out subject to the

maximization of the smoothness of the disparities while also

maximizing the quality of the match for the corresponding pixels

in the two images.

4



Intro to SGM for Stereo An RVL Tutorial by Avi Kak

� As you will see in this tutorial, the problem described above is

best cast within the framework of Markov Random Fields, which

allows us to achieve global-scale effects through calculations that

are local in nature.

� Even with the simplification made possible by MRF modeling, the

problem of making the best choices of the disparity labels to the

pixels is an NP-Hard problem in combinatorial optimization.

� As I mentioned earlier in this introduction, Hirschmüller

demonstrated it was possible to solve the optimization problem

approximately in a highly computationally efficient manner and

with results of higher quality than had ever been achieved with

the earlier solutions.

� To illustrate the power of Hirschmüller’s SGM algorithm, shown

below is a reconstruction of a portion of Jacksonville, FL, from 40

pairs of multi-date and multi-view satellite images from Maxar

(these used to be referred to as WorldView images previously).

These were created by ARA’s LEGO pipeline that uses Purdue

RVL’s implementation of a variant of the SGM algorithm. The

variant is known as the tSGM algorithm and it was first proposed

by Rothermel in 2017 in his “Development of a SGM-based

Multi-View Reconstruction Framework For Aerial Imagery”.

Our implementation of Rothermel’s variant and another variant

from our own lab are presented in the publication “A
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Comparative Evaluation of SGM Variants (including a New

Variant, tMGM) for Dense Stereo Matching” by Patil et al.

that you can access at

https://arxiv.org/pdf/1911.09800.pdf

Figure 1: A reconstruction of a portion of the downtown area of Jack-

sonville, FL, using 40 pairs of multi-view and multi-date Maxar satellite
images. The dense stereo matching algorithm used in this result was

developed by Purdue-RVL. As you would expect, there are many other
software components that go into producing the kind of result you see
in the figure. The result shown was produced by ARA’s LEGO pipeline

under an IARPA contract.

� Lest you think that our stereo framework can reconstruct only
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small areas on the ground, shown in Figure 2 is a section from

from a 120 km2 area in Ohio from our following publication

“Semantic Labeling of Large-Area Geographic Regions Using

Multi-View and Multi-Date Satellite Images and Noisy OSM

Training Labels” by Comandur and Kak in the IEEE-JSTARS

journal that you can access here

https://arxiv.org/pdf/2008.10271.pdf

� If you would like to see the flyby videos over the areas

reconstructed, there are available here:

https://engineering.purdue.edu/RVL/CORE3D/DSM/

� It is important to bear in mind that the precision of detail in the

large-area reconstructions in Figure 2 on the next page is exactly

the same as what you saw for a more localized reconstruction in

Figure 1. If were were to zoom into the reconstructions shown in

Figure 2, the quality of the detail would be no different from what

is shown in Figure 1.

� The stereo reconstructions I have shown so far were all at the

native resolution of the Maxar images, roughly around 0.3m per

pixel. For large-area monitoring of the earth, there is interest in

downshifting the resolution to see how that affects the quality of

the DSMs. Toward that end, shown in Figure 3 is a
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Figure 2: Sections of the DSMs for two large areas reconstructed by
Purdue’s RVL-LEGO pipeline: a 120 km2 area in Ohio and a 62 km2

area in California. The top two images depict two small sections from the
Ohio DSM, and the bottom two images depict two small sections from the
California DSM. If you were to zoom into the reconstructions, you will

see the same precision of detail as in the more localized reconstruction
in Figure 1. The large-area reconstructions shown here are from the

IEEE-JSTARS paper by Comandur and Kak.
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reconstruction of a 105 km2 area around Jacksonville, FL, at 1.5m

GSD. This DSM was produced by Purdue’s RVL-LEGO pipeline.

Figure 3: An example of a DSM produced at 1.5m GSD for the Jack-

sonville area of size 105 km2. This DSM was produced by Purdue’s
RVL-LEGO pipeline.

� Finally, the main reason for this tutorial is for it to serve as a

handout for Lecture 25 of my class on Computer Vision at Purdue

University. Here is a link to the course website so that you can see

for yourself where this lecture belongs in an overall organization of

the course:

https://engineering.purdue.edu/kak/ComputerVision
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2: Some Basic Vocabulary of Stereo Imaging

� For obvious reasons, any discussion of stereo in computer vision

must begin with a pair of images (I, I ′) of the same scene from

two different viewpoints. Shown below is an example.

I I ′

Figure 4: The two images of a stereo pair

� We choose one of the two images, say I , as our reference image.

The goal is to scan the pixels in I and, for each pixel (i, j) ∈ I ,

search in the other image, I ′, for the corresponding pixel (meaning

the pixel for the same object point in the scene) which, if found,

would be located at, say, the coordinates (m,n) ∈ I ′.
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� Subsequently, we refer to the distance d between the reference

image pixel (i, j) ∈ I and the corresponding pixel (m,n) ∈ I ′ in

the other image as the disparity associated with the reference

image pixel.

� The goal of a stereo matcher is to find for each pixel (i, j) ∈ I in

the reference image its corresponding pixel in the other image. In

other words, the goal of a stereo matcher is to calculate the

disparity map over the pixels in the reference image.

� The search for the corresponding pixels in the two images

becomes a little bit easier if the two images are rectified —

meaning that if a pair of corresponding pixels exist in the same

row in the two images. As you know from my Lecture 24, for any

given pixel (i, j) ∈ I , the search for its corresponding pixel in the

other image must be conducted on the former pixel’s epipolar

line in the other image. Also, as I explained in Lecture 24, a good

rectification algorithm, like the Loop and Zhang algorithm

presented in my “Loop and Zhang Reader”, will do a good job of

rectifying the two stereo images (I, I ′) so the epipolar lines

become the corresponding rows in the images. Here is a direct

link to the “Loop and Zhang Reader”:

https://engineering.purdue.edu/kak/Tutorials/StereoRectification.pdf

� From this point on, I’ll assume that the image pair (I, I ′) has

been appropriately rectified. As a consequence, for a given pixel
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(i, j) ∈ I , its corresponding pixel can be expected to be (i, n) ∈ I ′

for some value of integer n. Should we be able to find the

matching pixel at (i, n), the disparity at the reference-image pixel

(i, j) ∈ I will be j − n. [As you will see, for the case of rectified cameras, given a

pair of corresponding pixels that should be in the same row in the two images, the left-image

column-index will always be greater than the right-image column-index. More accurately

speaking, the left-image column-index will not be less that the right-image column-index.]

� It may appear that the assumption of images being rectified, as

stated above, would make trivial the problem of disparity

estimation. Unfortunately, that’s not the case.

� Shown below is a stereo pair that appears as if it might have been

rectified. Let’s go with that assumption just so that I can explain

that dense stereo is challenging even when the two images are

rectified.

� To show how difficult it would be to find the pixel

correspondences, I have drawn a line through the two images as

shown below. Let’s say we want to find the right-image pixel that

corresponds to the left-image pixel marked ’X’. As you see, all the

pixels in the vicinity of where we may hope to find the X’s

corresponding pixel look more or less the same. Therefore any

logic that searches for the corresponding pixels just on the basis of

the similarity of their neighborhoods is bound to fail.
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I I ′

Figure 5: Let’s pretend for a moment that these two stereo images are rectified.

� The difficulty of finding pixel correspondences as illustrated above

is greatly resolved by the Hirschmüller’s Semiglobal Matching

(SGM) algorithm cited earlier in the Introduction section.

� The key ideas that allows the SGM algorithm to create a dense

disparity map (meaning that it tries to find a disparity at every

pixel in the reference image) is that the search for the best

disparity value at a pixel is conducted simultaneously along

multiple directions in an image as illustrated in Figure 7. The

algorithm estimates the costs associated with the assignment of all

possible disparities to the pixels along a certain number of

designated directions. From amongst the choices made available

in this manner at each pixel, the disparity that has associated

with it the least cost is accepted for the pixel.
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Figure 6: Shows the great difficulty of finding matching points. For the
pixel marked ’X’ in the left image, where exactly is the corresponding
pixel in the right image?

Figure 7: For the pixel shown with a small circle, the arrows desginate
the directions along which the disparity assignment costs are estimated in

the SGM-8 algorithm by Hirschmüller. The disparity that has associated
with it the least cost is accepted for the pixel.
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� At this point, the reader might ask: If we know in advance the

disparity range [dmin, dmax] in which to search for, why is the

problem any more complex that reaching into the other image and

simply looking for the pixel has the best match for the pixel in

question in the reference image. And even if we had to use

multiple directions as advocated by Hirschmüller, given again a

known search bound, why is that any more difficult than looking

for the best pixel to match with along just one line?

� As you will see in the rest of this tutorial, the matching of the

pixels in the two images of a stereo pair cannot be carried out in

isolation from the matching decisions elsewhere in the image. A

decision for a disparity value at any given pixel must take into

account the previously calculated disparities at the neighboring

pixels and those, recursive speaking, must depend on the disparity

values computed before them. The main reason for that is that we

want the calculated disparities to be maximally smooth —

subject, of course, to the presence of genuine depth discontinuities

in the scene.

� It is the inter-dependencies between the disparity assignments at

the different pixels in the reference image that turn the problem

into an exercise in combinatorial optimization.
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3: Constraints on Disparity Values for
Rectified Cameras

� As you know, to the extent possible, our goal is to estimate the

disparity at every pixel in the reference image vis-a-vis the

corresponding pixels in the other images. In this section, I will

assume that that the image produced by the left camera (’left’

for an observer standing on the stereo baseline and looking in

the same direction as the cameras) is the reference image. We

also assume that the two images have been rectified and are

therefore row aligned for disparity calculations. Recall that, for

rectified cameras, each row is the epipolar line for the pixels in the

same row in the other image and vice versa.

� As it turns out, under the conditions described above, the

disparity values estimated at the pixels in the reference image

must obey an ordering constraint that will become obvious from

the explanations that follow. Since the constraint plays an

important role in how we clean up the noise in the computed

disparities, it is important to understand it. I will use the three

figures that follow to explain some key “properties” of disparity

values and, subsequently, the ordering constraint.
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Figure 8: Understanding the disparities calculated for rectified cameras - I

� Consider the case when the depth variations in the scene in front

of the cameras are as shown by the red line in Figure 8. This is a

good first example to convey the idea that even with the best

algorithms available, you may not be able to estimate the

disparity at all pixels in the reference image. As shown in Figure

8, an important reason for this is that one portion of the scene

may obscure other portions in either or both of the two cameras.

� For the case depicted in Figure 8, the sharp depth discontinuity at

point B in the scene creates a self-obscuration in the reference

camera. As a consequence, the scene points in the segment B-C-s1
are not visible to the reference camera. Another example of the

same is the obscuration in the reference camera created by the

depth discontinuity at point D in the scene. As a result, the

estimated disparities will also miss out on the scene points in the

segment D-E-s2 of what’s in front of the cameras.
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� The above observation is important for understanding the cause of

disparity jumps. We will have a sudden jump in the disparity map

when we go from the reference-image pixel for point B in the

scene to the next pixel that would correspond to point s1 in the

scene. You will see a similar jump in the disparities when you go

from the pixel for point D in the scene to the pixel for point s2.

� Let’s now look at the scene example shown in Figure 9. The

overall conclusion here is the same as before: Even when we are

able to estimate the disparities at every pixel in the reference

camera, some portions of the scene will remain uncovered on

account of the obscurations in — in this case — the right camera.

Figure 9: Understanding the disparities calculated for rectified cameras - II

� While the overall conclusion is the same for the previous example

and the current one, there is one very important difference: Now
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there will be gaps in the pixels in the reference image where

there will be no disparities. For example, there will be no

disparities for the reference-image pixels corresponding to the

portion s1-B-C of the scene because that portion is obscured in

the right camera. The same would be the case for the potion

s2-D-E of the scene.

� To summarize, whereas the example in Figure 8 leads to sudden

one-pixel-to-the-next jumps in the disparity map over the

reference image, the example in Figure 9 results in gaps in the

disparity map.

� The more complex example shown in Figure 10 will exhibit both

gaps and jumps in the disparity map over the reference image.

Under the best of conditions when you are able to find all

possible pixel correspondences for the pixels in the reference

image, you will see a gap for the portion s1-s2 of the scene followed

immediately by a jump at the next pixel corresponding to point C

in the scene.

� To continue with the example in Figure 10, subsequently you will

see a continuous disparity map for the portion C-s2 of the scene.

That will be followed by a gap over the pixels corresponding to

the portion s2DE in the left camera. followed by another

continuous run of disparity values for the portion EF in the scene,

following a pixel-to-pixel sudden jump in disparities created by
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Figure 10: Understanding the disparities calculated for rectified cameras - III

the right-camera obscuration for the portion F-G-s4 of the scene,

and followed, finally, by a continuous run of disparity values for

the portion s4-H-I of the scene. Note that we cannot refer to the

last few pixels in the reference camera as a gap since there is

nothing there to see of the object at those pixels.

� To formalize these observations, let’s use the notation (i, j) to

denote the pixels in the reference image and (m,n) to denote the

pixels in the other image. Assuming the images to be rectified and

that we are talking about the corresponding pixels in the same

row, indexed i, in the two cameras, let the column index values for

the kth correspondence in the ith row in the two images be

denoted jk in the reference image and nk in the other image. In

this case, the disparity dk would be given by

dk = jk − nk (1)
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� From the geometry of pinhole imaging, for the case of rectified

cameras, the value of dk is always positive. It will approach zero

for very distant objects in the scene. The closer a scene point to

the camera baseline, the larger the disparity. [In general, though, for two

cameras with converging optic axes, the disparity will be positive for scene points closer than the point of

convergence and negative for the scene points beyond that.]

� Let M = [(j1, n1), (j1, n1), (j2, n2), ....., (jK, nK)] denote a

sequence of consecutive matches along the ith row in the two

images. The matches obey the following ordering property: For

any two consecutive matches [(jk1, nk1), (jk2, nk2)], jk1 > jk2, and

nk1 > nk2

� For a more elaborate discussion of the constraints that apply to

the disparities for a pair of rectified cameras, see the paper “A

Hierarchical Symmetric Stereo Algorithm using Dynamic

Programming” by Van Meerbergen et el.:

https://https://people.inf.ethz.ch/pomarc/pubs/VanMeerbergenIJCV.pdf
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4: Markov Random Field Modeling of
Disparity Maps

� As mentioned in Section 2, it makes no sense to calculate the

disparity at each pixel in isolation from the other pixels in the

reference image. Speaking strictly, the disparity at each pixel

must depend on the disparities at all the other pixels. The

question then becomes: What is a good computationally feasible

model for the interdependence of the disparity values?

� A good computationally feasible model of interdependence that

has served well a vast majority of problems in computer vision is

known as the Markov Random Field (MRF). The most general

definition of MRF is for graphs — it addresses the properites of

probability distributions over the nodes in a graph.

� In our context, you can fit a first-order MRF model to an image if

the probability of the disparity at each pixel acquiring a particular

value depends directly on only the disparities at its immediate

neighbors.

prob
(

d(i, j) | I
)

= prob
(

d(i, j) | (m, n) ∈ Ni,j

)

(2)

where I represents all the pixel in the reference image and Ni,j is
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the set of pixels in the immediate neighborhood of the pixel at

(i, j). The notation prob
(

d(i, j)
)

stands for the probability of

the disparity at pixel (i, j) being what is specified by the disparity

map d(i, j) over the reference image.

� Connecting the above image-based definition of an MRF model

with its more general graph-theoretic definition, you can think of

each pixel as a node in a graph formed by all the pixels and each

direct pixel-to-pixel dependency by an edge in the graph. The

MRF assumption stated above boils down to saying that the

graph representing all the nodes is made up of cliques, with each

clique “centered” at a pixel (i, j) and with the other nodes in the

clique consisting of the immediate neighbors of (i, j).

� The model in Eq. (2) and its connection with the more general

graph-theoretic MRF modeling allows us to talk about the joint

probability of an entire disparity map. That is, we can now talk

about the probability to be associated with the disparities over all

the pixels in the image I . In principle, we would want to accept

that disparity map over all the pixels in I that has the highest

overall probability associated with it. We therefore want to be

able to talk about different possible disparity maps and their

associated probabilities.

� That takes us to a most famous theorem, known as

Hammersley-Clifford Theorem (HC), in probabilistic inference
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over graphs.

� The HC theorem tells us that if you are thinking about a joint

probability distribution over all the nodes in a graph, all it takes is

assigning arbitrary positive real numbers to the individual cliques

in the graph, normalizing the values so that you are not violating

the basic tenets of probability (the unit summation rule, for

example), and, subsequently, taking a product of the numbers.

� In the graph-theoretic jargon, the numbers you assign to the

cliques are referred to as the potentials. As mentioned, the

product of the potentials constitutes a valid joint distribution over

all the nodes in the graph in pretty much the same sense as

assigning arbitrary nonnegative numbers to the outcomes in a

random experiment constitutes a valid probability distribution as

long as the numbers add up to 1. For a general graph G = (V,E)

consisting of the nodes V and the edges E, the theorem is

expressed compactly as

prob(V ) =
∏

k

φ(cliquek) (3)

where φ(cliquek) is the potential assigned to the kth clique in the

graph G. Note that this is a necessary and sufficient condition for

the LHS above to be a legitimate probability joint distribution

over the set V of nodes in G.
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� The HC theorem gives us the license to think locally for drawing

inferences that work globally.

� While this may give us the permission to make each local decision

in isolation from all such decisions elsewhere in an image without

violating the HC theorem for creating a valid joint probability

distribution, in practice we must make the decisions

interdependently for generating the best solutions. Nevertheless,

the HC theorem is indispensable in making those

interdependent decisions more computationally efficient.

� In other words, while the HC Theorem prescribes a necessary and

sufficient condition for a joint probability distribution over the

nodes in a graph to be legitimate, it is only a necessary condition

for the probability distribution to be of practical utility.
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5: Cost Minimization over MRF for Solving
the Disparity Labeling Problem

� The HC theorem obviously allows us to make local decisions in

order to achieve global effects. While the theorem take care of the

necessary conditions to be satisfied for the localized processing of

an image, in and of itself it does not constrain the final solution

sufficiently for it to be of practical usefulness.

� The additional constraints on the final solution are supplied by

what’s come to be known as cost minimization. As you will see,

the process of cost minimization takes full advantage of the

localized nature of computations made possible by the HC

theorem.

� To explain how the cost minimization works algorithmically, I’ll

follow the basic definitions provided by Szeliski, et al. in their

2008 paper “A Comparative Study of Energy Minimization

Methods for Markov Random Fields with Smoothness-Based

Priors” that you can access here:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4420084
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� Before explaining the rudiments of cost minimization for disparity

estimation, I must point out that (as pointed out in the above

publication), this approach to problem solving is much more

general than would be reflected by the concerns of this tutorial.

Basically, in the context of computer vision, it should be possible

to solve any pixel labeling problem over an MRF with this

approach. Dense disparity estimation is obviously a pixel labeling

problem in the sense that you would like to associate a disparity

value with every pixel in the reference image. Other important

pixel labeling problems include semantic segmentation, object

detection, object tracking in videos, etc.

� At this point, you are probably surprised that the calculation of a

disparity map over the pixels in the reference image can be

considered to be an example of a pixel labeling problem. As it

turns out, yes, it can. We can place depth bounds on the scene for

which we are estimating the disparities. For a given separation

between two optical centers of two rectified cameras, the farther a

scene point, the smaller will be value for its disparity. That is, a

far-off scene point will be at approximately the same column

index in the two images. By the same token, a nearby scene point

will produce a large disparity in the reference image. So if we say

that the closest scene points will produce a disparity of, say, 10

pixels, we can then claim that the disparity value assigned to each

pixel in the reference image will be from the set of integers

{0, 1, 2, ..., 10}. As you can see, that definitely looks like a pixel

labeling problem.
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� When the probabilities associated with the assignment of labels to

pixels can be modeled as a MRF, a cost minimization framework

for the solution requires that you define two costs: the cost of

assigning a disparity label to the pixel (considering, say, the noise

at the pixel and the other pixels in its neighborhood) and the cost

associated with assigning two different disparity labels to the

pixels that are in each other’s immediate neighborhoods. The

former is referred to as the data cost and the latter as the

discontinuity cost. The two may also be referred to as data

penalty and discontinuity penalty. In the literature, you will also

see the following usage for the two costs: data energy and

discontinuity energy.

� Note again that in the usages discontinuity cost, discontinuity

energy, etc., the term discontinuity refers to the change in the

values of the disparity labels in a small neighborhood around each

pixel in the reference image.

� Denoting the data cost by Cdata and the discontinuity cost by

Cdiscon, we use the symbol C to denote a weighted combination of

the two:

C = Cdata + λCdiscon (4)

� The “best” labeling solution is then defined as the one that

minimizes the total cost C.
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� The purpose of the data cost at each pixel that gets a disparity

label is to capture the degree to which the assigned label agrees

with the observed data at and around the pixel where the label

was assigned. To calculate Cdata, we must sum the data costs at

all the pixels.

� For example, if d(i, j) is the disparity label assigned to the pixel

at (i, j) and if cdata is the cost associated with this assignment, we

can write the following expression for the overall data cost:

Cdata =
∑

(i,j)∈I

cdata

(

d(i, j)
)

(5)

� For a deeper insight into what is meant by the data cost, let’s say

you are in the process of constructing a disparity map over the

pixels in the reference image. At the moment, you are at the pixel

(i, j) in the reference image and you are looking at a

neighborhood in the same row in the other image in a window

whose second coordinate goes from n− d to n + d for some value

of the integer n. Let’s say that the pixels in that window are very

noisy and make it difficult to decide as to which of those pixels

would make a good match for the (i, j)th pixel in the reference

image. So any choice you make for the disparity value could

prove to be a wrong choice. In other words, you are not likely to

be very confident about whatever choice you make for the

disparity at (i, j) in the reference image. If d(i, j) is the disparity

you decide to assign to the (i, j) pixel, you would make the value
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of cdata

(

d(i, j)
)

large as a cost (or penalty, if that makes it easier

for your intuitions) for having chosen d(i, j) under rather difficult

and uncertain circumstances.

� In summary, in the context of disparity mapping, at any pixel

(i, j) in the reference image, cdata

(

d(i, j)
)

measures the how well

the choice of the disparity d(i, j) harmonizes with the other pixels

in the neighborhoods of both the (i, j) pixel in the reference

image and the (i, j + d) pixel in the other image. If you want to

factor in both neighborhoods, we could make it proportional to a

measure of the difference between the two neighborhoods with,

say, what’s known as the census transform.

� The formula for the total data cost is written more compactly as:

Cdata =
∑

p∈I

cdata(dp) (6)

� Let’s now turn our attention to the disparity discontinuity term in

Eq. (4). The goal of this term is to minimize sudden

discontinuities in the disparity values within small neighborhoods

in the reference image. In most practical applications, it is highly

unlikely that you would want the disparity labels assigned to the

pixels to be chaotic. To the extent possible, we want the disparity

maps to be piecewise continuous. In light of the discussion in

Section 3, piecewise continuity means that the disparity map
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along, say, each row may only have a finite (hopefully just small)

number of sudden jumps in disparity values, and also a finite

(hopefully just a small) number of intervals where there do not

exist any disparities on account of the gaps we talked about in

Section 3. Outside of such gaps and sudden jumps, we want the

disparity labels to be continuous over runs of pixels in the

reference image (and that includes runs in different directions in

the reference image). Minimization of the second term in Eq. (4)

is supposed to give us that sort of continuity.

� In general, we may write the following expression for the

discontinuity cost:

Cdiscon =
∑

(i,j)∈I

∑

(i′,j′)∈N(i,j)

cdiscon(d(i, j) 6= d(i′, j′)) (7)

where N(i,j) is a neighborhood of the pixel (i, j) in the reference

image. This formula uses the fact that, as discussed in Section 4,

the HC theorem allows us to limit the testing for disparity

continuity at each pixel in the reference image to the immediate

neighborhood of that pixel.

� We can write the above formula more compactly as:

Cdiscon =
∑

p∈I

∑

q∈Np

cdiscon(dp 6= dq) (8)
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� The formula shown above extracts the same penalty for each case

when the disparity label assigned at a neighborhood pixel q is

different from the disparity label assigned at the pixel p in

question. In general, you are more likely to make this cost a

function of the difference in the values of the disparities:

Cdiscon =
∑

p∈I

∑

q∈Np

cdiscon(dp − dq) (9)

� Since the disparity labels are ordinary integers, it is for us to set

up the cost function cdiscon so that the larger the difference dp− dq
in the disparity values at two neighboring pixels, the greater the

cost of assigning the disparity dp to the current pixel p.

� Since the discontinuity cost deals with disparity discontinuities,

in order to use the formula shown above we would need to define

cdiscon for all disparity differences dp − dq ≥ 1.

� Even with the localization of the cost calculations made possible

by MRF modeling, a truly global minimization of the total cost

defined earlier is computationally impossible for realistic images.

Just imagine the combinatorics of trying out different possible

ddisparities at all the pixels, computing the data cost and the

discontinuity cost for each choice in order to figure out the best

values to use for the disparity labels at each pixel.
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� In the next section, I’ll review the SGM algorithm by

Hirschmüller that is a computationally efficient approach to the

minimization, albiet an approximation one, of the overall data and

discontinuity costs. Since it is a solution to an NP-Hard

combinatorial optimization problem, it can never archieve a truly

global minimum. That raises the question how good is the

approximation achieved by the algorithm. As for that, the quality

of the results that can be achieved with this algorithm speak for

themselves.
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6: The SGM Algorithm

� As previously mentioned, SGM is an approximate but

computationally feasible solution to the cost minimization

problem presented in the previous section.

� A key concept in the explanation of the algorithm that follows is

that of a Disparity Volume over the reference image as shown in

Fig. 11. If the expected disparity range is [dmin, dmax], the

Disparity Volume would be of size W ×H × (dmax − dmin) where

W and H are the width and the height of the reference image.

� At each pixel p in the reference images, the goal of the SGM

algorithm is to estimate the total cost of the disparity dp at that

pixel being equal to each possible disparity label above the point

p in the Disparity Volume.

� You could say that for each of the W ×H × (dmax − dmin) points

in the Disparity Volume the job of the SGM algorithm is to

estimate the cost of the disparity at the pixel p shown in the

figure to be equal to each of the disparity values above that point.

� After the Disparity Volume is filled with cost values, for our final
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solution, to each pixel p in the reference image, we assign that

disparity that has associated with it the last total cost.

Figure 11: The Disparity Volume is shown in red and you can think of
it as sitting on top of the reference image.

� Fundamental to the SGM algorithm is the following expression for

the total cost C that one would want to minimize for obtaining

the best solution for the disparities at all the pixels in the

reference image:

C(d) =
∑

p

(

Cdata(p, dp) +
∑

q∈Np

P1·T [|dp−dq| = 1] +
∑

q∈Np

P2·T [|dp−dq| > 1]

)

(10)

� For the notation used in the above equation:
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d : a disparity map over the pixels in the reference image; you can think
of the map as d : {(i, j) => {dmin, dmax} | (i, j) ∈ I} where I is

reference image

p : a pixel in the reference image

q : a pixel in the neighborhood of the pixel p in the reference image

Np : local neighborhood around pixel p in the reference image I

dp : disparity label assigned to the pixel p in the reference image

Cdata(p, dp) : The data cost at the pixel p in the reference image for the
disparity label dp at that pixel

T : defined as T [arg] = 1 if arg is True and T [arg] = 0 when arg is false

P1 and P2 : User defined weights

� One of the key concepts of the SGM algorithm is that the total

cost defined above must be computed for each disparity level in a

prespecified range of disparities and, subsequently, in a winner

take all strategy, we retain at each pixel the disparity that has

associated with it the least cost at that pixel.

� Therefore, you must specify in advance the disparity range you

are interested in. I’ll use the notation (dmin, dmax) to express this

range. Obviously, the minimum expected disparity dmin puts a

constraint on the the farthest object point from the cameras and

the maximum expected disparity dmax a constraint on how close
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the object points are allowed to be. [In connection with this specification, note that,

as described previously in Section 3, the disparities cannot be negative for rectified cameras. In general, though,

disparities may be positive or negative for convergent cameras depending on whether the 3D point is closer than

the point where the optic axes intersect or farther. When the 3D point is on the camera side of the point of

intersection of the axes, the disparity is negative. And when the 3D point is farther than the point of intersection

of the axis, the the disparity is positive.

� Comparing the formulas for the discontinuity costs in Eq. (10)

and Eq. (9), SGM uses only two user-defined “weights” P1 and P2

to make a distinction between just two case of disparity

discontinuities: when |dp − dq| = 1 and when |dp − dq| > 1. As

you would expect, it must be case that P2 > P1. What that

means is that we want the disparities to change only slowly to the

largest extent possible but as dictated by the cost minimization.

You could say that SGM considers the assigned disparities to be

continuous if they change by at most a unit value when you go

from one pixel to the next in the reference image. Any larger

disparity changes on a pixel-to-pixel basis are to be discouraged

by the higher cost P2.

� Note that the essence of the cost minimization here — especially

in comparison with the other cost minimization solutions you have

seen in my class. The cost calculation involves just summing

numbers, some based on the differences in the pixel values and

others based on the differences in the assigned disparity values.

We are NOT visualizing the cost as defining a surface over a

parameter space and, therefore, we are NOT computing any
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Jacobians and Hessians here. On the other hand, now we are

solving a combinatorial problem: To the extent possible, we want

to try out all possible disparity labels at all the pixels and, finally,

retain for each pixel that disparity which minimizes the overall

cost.

� As you try to understand what follows in this section, it’s good to

keep at the back of your head the following thought: Our goal is

NOT to find the disparity value at each pixel of the reference

image that minimizes the cost at just that pixel. On the other

hand, our goal is to find the best disparity at each pixel that

minimizes the overall cost C.

� The most important aspect of SGM is how it resolves the

computational impracticality of using the cost formula in Eq. (10)

for finding the best disparity map d over the reference image. As

mentioned toward the end of the previous section, to find the

disparity map that truly minimizes the overall cost over all

possible disparity assignments over all the pixels in the reference

image is an NP-Hard problem. What that implies is that while

you might be able to get it to work on small images, it would be

prohibitively computationally expensive for images of the size you

are likely to encounter in non-trivial applications.

� In order to address this computational dilemma, SGM takes

inspiration from the following paper by Van Meerbergen et el.
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that I cited previously: “A Hierarchical Symmetric Stereo

Algorithm using Dynamic Programming.” An important

message in this paper is that while the overall cost minimization

problem is NP-Hard for a calculation that takes into account all

the pixels in the reference image, it is of polynomial-time

complexity if the disparity assignments and the cost minimization

is carried out for a single line of pixels at a time. Van Meerbergen

et el. demonstrated that such was the case for at least a

dynamic-programming based solution to disparity assignments

along what they called was a “scan-line” in the images.

� Hirschmüller generalized the computational feasibility of cost

minimization along one scanline into a multi-path approach to

solving the cost minimization problem for all the pixels in the

reference images.

� Let the symbol r denote the direction along which we wish to

estimate the cost as defined in Eq. (10). Let the estimated cost

along the direction r be designated Cr.

� Based on the formula in Eq. (10), we now write the following

formula for estimating the total cost along the direction r in the

reference image:
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Cr(p, d) = Cdata(p, d) +

min

(

Cr(p− r, d− 1) + P1, Cr(p− r, d+ 1) + P1, min
i

(

Cr(p− r, i)
)

+ P2

)

(11)

� To understand the above formula, note that for any direction

vector r our goal is fill the “Disparity Volume” over the reference

image with cost estimates by Cr(p, d) as defined above. To the

extent it is possible, we need this value for all possible disparity

labels at every pixel p in the reference image. Each disparity label

in the [dmin, dmax] range defines a disparity level in the Disparity

Volume over the reference image. Figure 12 depicts the case when

we are interested in estimating Cr(p, d) for the disparity label dk
at the pixel p. The direction of r would be the arrow from the

pixel at p− r to the pixel at p in the figure.

� To revisit Eq. (11) and elaborate on it through the depiction in

the above figure, the formula in Eq. (11) says that for the

Discontinuity Cost we need to choose the minimum of the

following three values: (1) We reach down to the level dk−1 in the

Disparity Volume and, for the previously addressed pixel at p− r,

we fetch the value stored there for Cr. To that value we add the

weight P1; (2) We reach up into the level dk+1 in the disparity

value and, for the previously addressed pixel p− r, we fetch the
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Figure 12: Recursive calculation of the disparity discontinuity cost at

pixel p for the disparity label dp = k in the direction r. The recursive
calculation is based on the previously computed discontinuity costs at the

pixel p− r through the formula shown in Eq. (11).

value stored there for Cr. To that value we again add the weight

P1; and (3) We vertically scan the Disparity Volume at the

location p− r for all other disparity labels and record the

minimum of the Cr values stored there. To the value we fetch we

add the weight P2. The Discontinuity Cost at pixel p at the

disparity level dk is then set to the minimum of these three

numbers.

� In addition to the above described recursive computation of the

discontinuity costs at pixel p for every possible disparity label, the

formula shown in Eq. (11) also requires us to compute the data

costs. Data cost computational are straightforward — all they

require is a comparison the pixel neighborhoods at the pixel
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p = (i, j) in the reference image with the same neighborhood in

the other image at the pixel (i, j − d).

� In a practical implementation of the SGM algorithm, the

computation of the data costs at all points in the Disparity

Volume is a part of the initialization that is carried out before

invoking the recursions for calculating the Discontinuity Costs.

� After the total costs Cri(p, d) have been computed for a set of

directions ri, i = 1, 2, ..., they are simply aggregated as follows:

S(p, d) =
∑

i

Cri(p, d) (12)

This is referred to as the aggregation step in the algorithm.

� From the Disparity Volume, of size H ×W × (dmax − dmin), filled

with value of S(p, d) as explained above, we now retain at each

pixel p of the reference image that disparity d for which the

S(p, d) value is the least:

dp = argmin
d

S(p, d) (13)

� That takes us to the question of how many directions ri to use in

the aggregation step described above. In the most commonly used
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implementations of SGM, one uses either 8 or 16 directions. We

will refer to these as SGM-8 and SGM-16.

� Figure 13 on the next page shows the 8 directions for computing

the direction dependent costs Cri for i = 1 . . . 8.

� In all cases, the current pixel is in the 4th row and 4th column,

counting the rows and columns at the upper-left hand corner.

� The red arrows for each direction indicate how the recursion

works in each case. For example, in (a), in order to estimate Cr at
the current pixel, you would need to have previously computed

the values for this cost at the pixel immediately to the left. On

the other hand, for the case shown in (e), the current value for Cr

depends on the previously computed values for the same at the

pixel that is the upper-left diagonal neighbor of the current pixel.

� Figure 13 also presents the scanning strategy to be used for each

of the 8 directions. For example, for the direction of recursion

shown in (a), it makes to sense to scan the pixels left to right and

top to bottom. The two perpendicular arrows you see at top left

of the image array in (a) indicate that you start scanning the

image at the upper left corner and go from pixel-to-pixel in each

row and row-to-row. When you are the current pixel, the shaded

area of the image array indicates the pixels already visited.
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Figure 13: Computation of the Cri for 8 different values of the direction
vectors ri.
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� It’s interesting to see that the left-to-right and top-to-bottom

scanning strategy works best for the recursion directions shown in

(a), (b), and (e). On the other hand, the image scanning would

need to be from right-to-left and top-to-bottom for the recursion

direction depicted in (f).

� For the rest of the recursion directions, for cases shown in (c), (d),

(h), you would need to scan the image right-to-left and

bottom-to-top. Finally, for the recursion direction in (h), you

would to scan the image right-to-left and bottom-to-top.

� The next figure, Figure 14, shows the SGM recursion being

implemented in a sweep mode. For each of the eight directions of

recursive estimation, you simultaneously estimates the costs along

a sweep line. Since the sweep directions align with the cardinal

axes or the diagonals as shown, updating the coordinates of the

pixels that would need to be updated at the next position of the

sweep-line is straightforward. For the sweep lines parallel to the

image axes, it is entirely trivial. And, if you think about it, it is

just as easy for the diagonal sweep lines.
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Figure 14: The sweep mode for calculating the costs Cri for the 8 dif-
ferent directions in SGM-8.
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7: Clean-up of the SGM Computed
Disparities

� There are various kinds errors that can creep into the process of

disparity mapping the pixels in the reference image. The sources

of these errors are: (1) image regions with no or low or repetitive

textures; and (2) gaps in the disparity map on account of

occlusions in the scene as we talked about in Section 3.

� In regions with no or low textures, the data costs at neighboring

pixels in the reference image lose their ability to discriminate

between different possible matches in the other image for a given

pixel in the reference image. This creates disparity noise during

the execution of the algorithm.

� When a disparity map has gaps on account of occlusions, the logic

of SGM will willy-nilly assign disparity values there since the final

disparity assigned to a pixel is the argmax along the disparity axis

at that location in the reference image. Depending on the extent

of the gap, and also depending on the coherence of the disparity

assignments created by the argmax operation at adjoining pixels,

you may either see disparity outliers or you could end up with

random floating patches of disparity values over the values

elsewhere.
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� The outliers can easily be rejected by applying a small 3× 3

median filter to the estimated disparity map.

� Getting rid of the random floaters in a disparity map is a bit

trickier since you do not want to get rid of the disparities

corresponding to small protrusions in the 3D surface being

imaged. Usually, for those portions of a disparity map that

actually correspond to meaningful structures in the scene, the

disparity labels are likely to vary by just one unit as you go from

one pixel to the next. That makes it easy to identify the regions

delimited by rather large jumps in disparity labels. All you have

to do is to scan a computed disparity map and mark the pixels

with large jumps in disparity labels. If the bounded regions thus

identified are small enough in size, you just discard them.

However, getting rid of “disparity floaters” in this manner will

create gaps in the disparity map. You would declare the pixels

thus identified as possessing invalid disparities Recovering the

disparities may be possible under certain conditions. See the

paper by Hirschmüller for his recommendations on this issue.

� An important method for detecting invalid disparities over the

reference image is constructing a second disparity map, but this

time after you have switched the roles of two images. That is,

what was previously the other image now becomes the new

reference image vis-a-vis the other image.
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� For obvious reasons, the SGM algorithm would work in exactly

the same fashion as before.

� We will denote the first disparity map by dL→R and the second by

dL←R.

� Let (p,q) be a pair of corresponding pixels discovered when we

constructed the dL→R disparity map. For the pixel p in the “left”

image, the corresponding pixel q in the “right” image.

� When there are no errors in the assignment of the disparity labels,

we woulld dL→R(p) to be equal to dL←R(q). However, to account

for any residual errors even under the best of conditions, we may

allow one of these two disparitiy assignments to differ by at most

one unit. That leads to the following rule for discovering

additional invalid pixels in your original reference images:

d(p) = dL→R(p) if |dL→R(p)− dL←R(q)| ≤ 1

= dinvalid otherwise (14)
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