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ABSTRACT
Video Rewrite uses existing footage to create automati-
cally new video of a person mouthing words that she did
not speak in the original footage. 

Video Rewrite uses computer-vision techniques to
track points on the speaker’s mouth in the training foot-
age, and morphing techniques to combine these mouth
gestures into the final video sequence. The new video
combines the dynamics of the original actor’s articula-
tions with the mannerisms and setting dictated by the
background footage. Video Rewrite is the first facial-ani-
mation system to automate all the labeling and assembly
tasks required to resync existing footage to a new
soundtrack.
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1  INTRODUCTION
Humans are extremely sensitive to the synchronization
between speech and lip motions. For example, the special
effects in Forrest Gump are compelling because the
Kennedy and Nixon footage is lip synched to the movie’s
new soundtrack. In contrast, close ups in dubbed movies
are often disturbing due to the lack of lip sync. Our sys-
tem, Video Rewrite, automatically synthesizes faces with
proper lip sync. It can be used for dubbing movies, tele-
conferencing, and special effects.

Video Rewrite automatically pieces together from
old footage a new video that shows an actor mouthing a
new utterance. The results are similar to the labor-inten-

1. This paper is based on a previous paper [Bregler97]. Our 
previous paper describes the related literature and presents 
more details about our evaluation techniques, contributions, 
and future plans.

sive special effects in Forrest Gump and to the Actors
system from JPL [Scott94]. Video Rewrite learns from
example footage how a person’s face changes during
speech. We learn what a person’s mouth looks like from a
video of that person speaking normally. We capture the
dynamics and idiosyncrasies of her articulation by creat-
ing a database of video clips. In contrast, most current
facial-animation systems rely on generic head models
that do not capture the idiosyncrasies of an individual
speaker (see, for example, [Parke72]).

Video Rewrite shares its philosophy with concatena-
tive speech synthesis [Moulines90]. Instead of modeling
the vocal tract, concatenative speech synthesis analyzes a
corpus of speech, selects examples of phonemes, and nor-
malizes those examples. Concatenative speech synthesis
creates new sounds by concatenating the proper sequence
of phonemes. After the appropriate warping of pitch and
duration, the resulting speech is natural sounding. This
approach to synthesis is data driven: The algorithms ana-
lyze and resynthesize sounds using little hand-coded
knowledge of speech. Yet they are effective at implicitly
capturing the nuances of human speech. 

Video Rewrite creates new videos using two steps:
analysis of a training database and synthesis of new foot-
age. In the analysis stage, Video Rewrite automatically
segments the training database into phonemes. The pho-
nemes and automatically tracked facial labels completely
describe the visemes in the training database. In the syn-
thesis stage, our system selects from this video database,
as dictated by a new utterance. It automatically retrieves
the appropriate viseme sequences, and blends them into a
background scene using morphing techniques. The result
is a new video with lip and jaw movements that synchro-
nize to the new audio. The steps used in the analysis stage

Figure 1: Overview of analysis stage. Video Rewrite uses
the audio track to segment the video into triphones. Vision
techniques find the orientation of the head, and the shape
and position of the mouth and chin, in each image. This
video model is used in the synthesis stage.
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Figure 2: Overview of synthesis stage. Video Rewrite
segments new audio and uses these segments to select
triphones from the video model. Based on labels from the
analysis stage, the new mouth images are morphed into a
new background face.
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are shown in Figure 1, and are described in Section 2.
Those of the synthesis stage are shown in Figure 2, and
are described in Section 3. Section 4 summarizes our
results.

2  ANALYSIS FOR VIDEO MODELING
As shown in Figure 1, the analysis stage creates an anno-
tated database of example video clips, derived from
unconstrained footage. We refer to this collection of
annotated examples as a video model. This model cap-
tures how the subject’s mouth and jaw move during
speech. These training videos are labeled automatically
with the phoneme sequence uttered during the video, and
with the locations of fiduciary points that outline the lips,
teeth, and jaw.

In Sections 2.1 and 2.2, we describe the visual and
acoustic analyses of the video footage. In Section 3, we
explain how we use this model to synthesize new video.

2.1  Annotation Using Image Analysis
Video Rewrite uses any footage of the subject speaking.
As her face moves within the frame, we need to know the
mouth position and the lip shapes at all times. In the syn-
thesis stage, we use this information to warp overlapping
videos such that they have the same lip shapes, and to
align the lips with the background face.

The eigenpoints algorithm [Covell96] locates fidu-
ciary points in images; like related techniques [Lanitis95,
Beymer93], it works reliably and automatically, even in
low-resolution images. We use the eigenpoints algorithm
to delineate the mouth and jaw. 

We created two eigenpoints models for locating the
fiduciary points from a small number of images. We hand
annotated only 20 images (of 3654 images total; about
0.5 percent). We extended the hand-annotated dataset by
morphing pairs of annotated images to form intermediate
images, expanding the original 20 to 210 annotated
images without any additional manual work. We then
derived the two eigenpoints models using this extended
data set.

The derived eigenpoints models locate the facial fea-
tures using six basis vectors for the mouth and six differ-
ent vectors for the jaw. The eigenpoints models place the
fiduciary points around the feature locations: 32 basis
vectors place points around the lips, and 64 basis vectors
place points around the jaw.

To allow for a variety of motions, we warp each face
image into a standard reference plane, prior to eigen-
points labeling. We find the global transform that mini-
mizes the mean squared error between a large portion of
the face image and a facial template. We complete this
minimization using the areas around the forehead, eye-
brows, upper cheeks and lower nose. We currently use an
ellipsoidal transform [Basu96], followed by an affine
transform [Black95]. The ellipsoid allows us to describe
the curvature of the face and to compensate for changes
in pose. Subsequent processing using an affine transform
provides more accurate and reliable estimates of the
head’s translation and rotation. Once the global mapping
with the minimum mean square error is found, it is
inverted and applied to the image, putting that face into
the standard coordinate frame. We then perform eigen-

points analysis on this prewarped image to find the fidu-
ciary points.

The labels provided by eigenpoints allow us automat-
ically (1) to build the database of example lip configura-
tions, and (2) to track the features in a background scene
that we intend to modify. Section 3.2 describes how we
match the points that we find in step 1 to one another and
to the points found in step 2.

2.2  Annotation Using Audio Analysis
All the speech data in Video Rewrite are segmented into
triphones. Video Rewrite uses these labels to segment the
video. When we synthesize a new video, we cross-fade
the overlapping regions of neighboring triphones. We
thus ensure that the precise transition points are not criti-
cal, and that we can capture effectively many of the
dynamics of coarticulation.

We used gender-specific HMMs, trained on TIMIT
data, to create a fine-grained phonemic transcription of
our input footage, using forced Viterbi search. From this
transcript, Video Rewrite segments the video automati-
cally into triphone videos, labels them, and includes them
in the video model.

3  SYNTHESIS USING A VIDEO MODEL
As shown in Figure 2, Video Rewrite synthesizes the final
lip-synced video by labeling the new speech track, select-
ing the sequence of triphone videos that most accurately
matches the new speech utterance, and stitching these
images into a background video.

The background video in Video Rewrite includes
most of the subject’s face as well as the scene behind the
subject. The frames of the background video are taken
from the source footage in the same order as they were
shot. The head tilts and the eyes blink, based on the back-
ground frames. 

In contrast, the different triphone videos are used in
whatever order is needed. They simply show the motions
associated with articulation. We use illumination-match-
ing techniques [Burt83] to avoid visible seams between
the triphone and background images.

Labeling the new soundtrack is the first step in syn-
thesis (Figure 2). We label the new utterance with the
same HMM that we used to create the video-model pho-
neme labels. In Sections 4.1 and 4.2, we describe the
remaining steps: selecting triphone videos and stitching
them into the background.

3.1  Selecting Triphone Videos
The new speech utterance, marked with phoneme labels,
determines the target sequence of lip shapes. We would
like to find a sequence of triphone videos from our data-
base that matches this new speech utterance. For each tri-
phone in the new utterance, our goal is to find a video
example with exactly the transition that we need. Since
this goal often is not reachable, we compromise by a
choosing a sequence of clips that approximates the
desired transitions and shape continuity.

Given a triphone in the new speech utterance, we
compute a matching distance to each triphone in the
video database. The matching metric has two terms: the
phoneme-context distance, , and the distance betweenDp
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lip shapes in overlapping visual triphones, . The total
error is

where the weight, , is a constant that trades off the two
factors.

The phoneme-context distance, , is the weighted
sum of phoneme distances between the target phonemes
and the video-model phonemes within the context of the
triphone. If the phonemic categories of the target and the
video-model phonemes are the same (for example, 
and ), then this distance is 0. If the target and the
video-model phonemes are in different viseme classes
(  and ), then the distance is 1.  If they are in differ-
ent phonemic categories but are in the same viseme class
(  and ), then the distance is a value between 0 and
1. The intraclass distances are derived from published
confusion matrices [Owens85].

In the phoneme-context distance, , the center pho-
neme of the triphone has the largest weight, and the
weights drop smoothly on either side. Although the video
model stores only triphone images, we consider the triph-
one’s larger context when picking the best-fitting
sequence. In current animations, this context covers the
triphone itself, plus one phoneme on either side.

The second term, , measures how closely the
mouth shapes match in overlapping segments of adjacent
triphone videos. In synthesizing the mouth shapes for
“teapot,” we want the shapes for the  and  in the
lip sequence used for  to match the shapes for the

 and  in the sequence used for . We
measure this similarity by computing the Euclidean dis-
tance, frame by frame, between four-element feature vec-
tors containing the overall lip width, overall lip height,
inner lip height, and height of visible teeth.

The lip-shape distance ( ) between two triphone
videos is minimized with the correct time alignment. For
example, consider the overlapping shapes for the  in

 and . The durations of the initial
silence within the  phoneme may be different. The
phoneme labels do not provide us with this level of
detailed timing. Yet, if the silence durations are different,
the lip-shape distance for two otherwise-well-matched
videos will be large. 

We want to find the temporal overlap between neigh-
boring triphones that maximizes the similarity between
the two lip shapes. We shift the two triphones relative to
each other to find the best temporal offset and duration.
We then use this optimal overlap both in computing the
lip-shape distance, , and in cross-fading the triphone
videos during the stitching step. The optimal overlap is
the one that minimizes  while still maintaining a mini-
mum allowed overlap.

3.2  Stitching It Together
Video Rewrite produces the final video by stitching
together the appropriate entries from the video database.
At this point, we have already selected the sequence of
triphone videos that most closely matches the target
audio. We need to align the overlapping lip images tem-
porally. This internally time-aligned sequence of videos
is then time aligned to the new speech utterance. Finally,
the resulting sequences of lip images are aligned spatially

and are stitched into the background face. We describe
each step in turn.

3.2.1  Time aligning the triphones
We have a sequence of triphone videos that we must

combine to form a new mouth movie. We need to time
align the triphone videos carefully before blending them.
If we are not careful in this step, the mouth will appear to
flutter open and closed inappropriately. We align the tri-
phone videos by using the overlap duration and shift that
provide the minimum value of  for the given videos.

We then align the lip motions with the target utter-
ance by comparing the corresponding phoneme tran-
scripts. The starting time of the center phone in the
triphone sequence is aligned with the corresponding label
in the target transcript. The triphone videos are then
stretched or compressed so that they fit the time needed
between the phoneme boundaries in the target utterance.

3.2.2  Combining the lips and the background
The remaining task is to stitch the triphone videos

into the background sequence. We need to align them all
so that the new mouth is firmly planted on the face. Any
error in spatial alignment causes the mouth to jitter rela-
tive to the face—an extremely disturbing effect.

We use the combined tranforms from the mouth and
background images to the template face (Section 2.1) as
our starting estimate for this alignment. We improve its
accuracy by reestimating the global transform, directly
matching the triphone images to the background face.

We use a replacement mask to specify which por-
tions of the final video come from the triphone images
and which come from the background video. This
replacement mask warps to fit the new mouth shape in the
triphone image and to fit the jaw shape in the background
image. The mask replaces the mouth, chin, and smile
lines.

The mouth’s shape is completely determined by the
triphone images. When the triphone sequences overlap in
time, their mouth shapes are aligned with one another:
The mouth shapes are linearly cross-faded between the
shapes in the overlapping segments of the triphone vid-
eos.

The jaw’s shape, on the other hand, is a combination
of the background jaw line and the two triphone jaw
lines. Near the ears, we want to preserve the background
video’s jaw line. At the center of the jaw line (the chin),
the shape and position are determined completely by
what the mouth is doing. In between, we smoothly vary
the weighting of the background and triphone shapes
along the jawline.

The derived fiduciary positions are used as control
points in morphing. All morphs are done with the Beier–
Neely algorithm [Beier92]. For each frame of the output
image, we need to warp four images: the two triphones,
the replacement mask, and the background face. The
warping is straightforward, since we generate high-qual-
ity control points automatically using the eigenpoints
algorithm.

4  RESULTS
We applied Video Rewrite to public-domain footage of
former President John F. Kennedy. For this application,
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we digitized 2 minutes (1157 triphones) of Kennedy
speaking during the Cuban missile crisis. Forty-five sec-
onds of this footage are from a close-up camera, posi-
tioned about 30 degrees to Kennedy's left. The remaining
images are medium-distance shots from the same side.
The size ratio is approximately 5 : 3 between the close-up
and medium shots. During the footage, Kennedy moves
his head about 20 degrees vertically, reading his speech
from notes on the desk and making eye contact with a
center camera (footage from which we do not have).

We used this video model to synthesize new animations
of Kennedy saying, for example, “Read my lips” and “I
never met Forrest Gump.” These animations combine the
footage from both camera shots and from all head poses.
The resulting videos are shown at our web site, http://
www.interval.com/papers/1997-022/. Figure 3 shows
example frames, extracted from these videos. 

We evaluated our Kennedy results qualitatively along
the following dimensions: synchronization between lip
videos and between the composite lips and the utterance;
spatial registration between the lip videos and between
the composite lips and the background head; quality of
the illumination matching between the lips and the back-
ground head; visibility of the chosen fading-mask extent
and of the background warping; naturalness of the com-
posited articulation; and the overall quality of the video.
• There are visible timing errors in 1 percent of the pho-

nemes. These timing errors all occur during plosives
and stops. There are no visible artifacts due to synchro-
nization errors between triphone videos.

• The lips are distorted unnaturally in 8 percent of the
output frames. This distortion is caused by mistakes in
the estimate of out-of-plane facial curvature. We see no
other errors in the alignment between the lips and the
background face.

• The illumination matching is accurate. There are no vis-
ible artifacts from illumination mismatches.

• The fading mask occasionally includes nonfacial
regions (e.g., the flag behind Kennedy or the President’s
shirt collar). This error results in visible artifacts in  4
percent of the output frames, when lips from one head
pose are warped into another pose.

• Unnatural-looking articulation results occasionally from
replacement of a desired (but unavailable) triphone
sequence. In our experiments with Kennedy, this type of
replacement occurs on 94 percent of the triphone vid-
eos. Of those replacements, 4 percent are judged unnat-
ural looking.

• Despite the foregoing occasional artifacts, the overall
quality of the final video is judged as excellent.

5  CONCLUSION
Video Rewrite is a facial-animation system that is driven
by audio input. The output sequence is created from real
video footage. It combines background video footage,
including natural facial movements (such as eye blinks
and head motions) with natural footage of mouth and
chin motions. Video Rewrite is the first facial-animation
system to automate all the audio- and video-labeling
tasks required for this type of reanimation. 
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