
An Efficient Implementation of the
Patterson-Holdsworth
Auditory Filter Bank

Malcolm Slaney
Apple Computer Technical Report #35

Perception Group—Advanced Technology Group
 © 1993, Apple Computer, Inc.

1.0 Introduction
This report describes an implementation of a cochlear model proposed by Roy Patterson
[Patterson1992]. Like a previous report [Slaney1988], this document is an electronic notebook
written using a software package called Mathematica™ [Wolfram 1988].

This report describes the filter bank and its implementation. The filter bank is designed as a set of
parallel bandpass filters, each tuned to a different frequency. This report extends previous work
by deriving an even more efficient implementation of the Gammatone filter bank, and by showing
the MATLAB™ code to design and implement an ERB filter bank based on Gammatone filters.

2.0 Ear Filters
Patterson’s cochlear model is based on an array of independent bandpass filters. The filters are
tonotopically organized from high frequencies at the base of the cochlea, to low frequencies at the
apex. In Patterson’s model the bandwidth of each cochlear filter is described by an Equivalent
Rectangular Bandwidth (ERB) [Patterson1992]. This section of the report describes how
cochlear channels are spaced so that each filter overlaps its neighbors by the same amount.

2.1 Equivalent Rectangular Bandwidth (ERB)

The ERB is a psychoacoustic measure of the width of the auditory filter at each point along the
cochlea. Psychoacoustic experiments often measure something known as the Critical Band but we
will use the terms interchangeably. A critical band or ERB filter models the signal that is present
within a single auditory nerve cell or channel. Glasberg and Moore [Glasberg1990] recommend
the following equation for the ERB.

ERB[f_] := 24.7(4.37 f / 1000 + 1)

ERB[1000]

132.639

ERB[3000]

348.517

This can be rewritten as

 f
ERB[f_, EarQ_, minBW_] := ---- + minBW; ---
 EarQ

where EarQ is the asymptotic filter quality at large frequencies and minBW is the minimum
bandwidth for low frequencies channels. In between there is a smooth transition. This is similar
to the bandwidth defined in Lyon’s model which is given by

 2 2
Sqrt[f + EarBreakFreq]

 EarQ

A general form for the bandwidth of a cochlear channel as a function of center frequency is given
by

ERB[f_, EarQ_, minBW_, order_] :=
((f/EarQ)^order + (minBW)^order)^(1/order);

with Glasberg and Moore recommending the following parameters

GlasbergBandwidthParms={EarQ->1000/(24.7*4.37),
minBW->24.7*1,
order->1}

{EarQ -> 9.26449, minBW -> 24.7, order -> 1}

Lyon [Slaney1988] recommends a nominal bandwidth given by

Patterson’s Ear Model 2

LyonBandwidthParms={minBW->EarBreakF/8,
EarQ->8,
order->2}/.

EarBreakF->1000

{minBW -> 125, EarQ -> 8, order -> 2}

and Greenwood [Greenwood1990] recommending

GreenwoodBandwidthParms={EarQ->35/(Log[10]*a),
minBW->a*A*k*Log[10]/35,
order->1}/.

a->2.1/.
A->165.4/.
k->1//N

{EarQ -> 7.23824, minBW -> 22.8509, order -> 1.}

These three bandwidth functions are plotted below. The solid curve is the Critical Band function
recommended by Glasberg and Moore, the dashed line is the one by Lyon, and the dash-dot line
is from Greenwood.

<<Graphics`Graphics`
Show[{LogLogPlot[ERB[f,EarQ,minBW,order]/.GlasbergBandwidthParms,

{f,20,8000},DisplayFunction->Identity,
AxesLabel->{"Freqency (Hz)","Bandwidth (Hz)"},
PlotLabel->"Critical Bands or ERB"],

LogLogPlot[ERB[f,EarQ,minBW,order]/.LyonBandwidthParms,
{f,20,8000},DisplayFunction->Identity,
PlotStyle->Dashing[{0.025,0.025}]],

LogLogPlot[ERB[f,EarQ,minBW,order]/.GreenwoodBandwidthParms,
{f,20,8000},DisplayFunction->Identity,
PlotStyle->Dashing[{0.005,0.025,0.025,0.025}]]},

DisplayFunction->$DisplayFunction];

50. 100. 500.1000. 5000.
Freqency (Hz)

Critical Bands or ERB

50.

100.

200.

500.

Bandwidth (Hz)

Patterson’s Ear Model 3

The equivalent filter quality factor, Q, can be determined by dividing center frequency, f, by the
ERB. In this plot, the highest curve (sharper filters) corresponds to Glasberg’s suggested
parameters. The solid curve is the Critical Bank function recommended by Glasberg and Moore,
the dashed line is the one by Lyon, and the dash-dot line is from Greenwood

Show[{Plot[f/ERB[f,EarQ,minBW,order]/.GlasbergBandwidthParms,
{f,20,8000},DisplayFunction->Identity,
AxesLabel->{"Freqency (Hz)","Filter Q"},PlotRange->All
PlotLabel->"Filter Quality Factors"],

Plot[f/ERB[f,EarQ,minBW,order]/.LyonBandwidthParms,
{f,20,8000},DisplayFunction->Identity,
PlotStyle->Dashing[{0.025,0.025}]],

Plot[f/ERB[f,EarQ,minBW,order]/.GreenwoodBandwidthParms,
{f,20,8000},DisplayFunction->Identity,
PlotStyle->Dashing[{0.005,0.025,0.025,0.025}]]},

DisplayFunction->$DisplayFunction];

2000 4000 6000 8000
Freqency (Hz)

Filter Quality Factors

2

4

6

8

Filter Q

In all three cases the Q is flat, except at low frequencies where the auditory filters have a smaller
Q and a wider relative bandwidth. For the rest of this report we will use Glasberg’s parameters.

2.2 Channel Spacing

Each filter in Paterson’s model is one ERB wide, but the frequency spacing between channels is
not specified. In the cochlea there are many thousands of hair cells but computer models can only
approximate this density of channels. Two ways to allocate the channels will be described here.
In the simpler case, each cochlear channel is spaced a given fraction of an ERB from the previous
one. Alternatively, the highest and lowest frequencies can be specified along with the desired
number of channels. The equation for the simple case can then be solved to find the proper ERB
spacing for each channel.

In our implementation of Lyon’s Cochlear Model [Slaney1988] we used the parameter stepfactor
to indicate the amount of overlap (usually as a fraction less than one.) We will use the same

Patterson’s Ear Model 4

convention here. Stepfactors close to zero indicate filters nearly completely overlap, a stepfactor
of 0.5 means that each frequency in the input signal is “sampled” by two cochlear channels, and a
stepfactor of 1 means that there is almost no overlap between channels.

The following expression represents the mapping between center frequency and cochlear position
index. We integrate from the Nyquist frequency (fn) down to any arbitrary frequency (cf) to
model the propagation of energy from base (high frequencies) to apex (low frequencies).The
resulting equation gives us the channel number that is centered on any arbitrary frequency.

index = Integrate[-1/ERB[f, EarQ, minBW, 1]/
stepfactor,{f,fn,cf}]

 EarQ Log[cf + EarQ minBW] EarQ Log[fn + EarQ minBW]
-(-------------------------) + ------------------------- ------------------------ ------------------------
 stepfactor stepfactor

N[index/.GlasbergBandwidthParms/.fn->8000/.stepfactor->.25/.
cf->1000]

70.4687

We can use this equation to find how many channels are needed to cover an arbitrary low
frequency sound. Let’s plot this, assuming a Nyquist rate of 8000Hz. We overlap the filters by
25% (stepfactor=.25).

Plot[index/.GlasbergBandwidthParms/.
stepfactor->.25/.fn->8000,

{cf,100,8000},
AxesLabel->{"Frequency","Channel #"}];

2000 4000 6000 8000
Frequency

20

40

60

80

100

120

Channel #

We need to invert this equation to find the mapping between index and center frequency. This will
allow us to calculate the appropriate center frequency for any stage in the filter bank.

cfsoln = Simplify[Solve[index == i, cf][[1,1]]]

 fn + EarQ minBW
cf -> -(EarQ minBW) + -------------------- -------------------
 (i stepfactor)/EarQ
 E

Patterson’s Ear Model 5

N[cf/.cfsoln/.GlasbergBandwidthParms/.fn->8000/.stepfactor->.25/.
i->70]

1015.64

We plot this solution to make sure it looks reasonable.

Plot[cf/.cfsoln/.GlasbergBandwidthParms/.
 fac->1.0/.stepfactor->.25/.fn->8000,{i,0,120},
 AxesLabel->{"Channel #","Frequency"}];

20 40 60 80 100 120
Channel #

2000

4000

6000

8000

Frequency

Alternatively, we might know how many channels we want within a frequency range. We can
solve the index equation for the proper stepfactor to use.

stepSoln=Simplify[Solve[index==numChannels/.
cf->lowFreq,stepfactor]]

 EarQ (Log[fn + EarQ minBW] - Log[lowFreq + EarQ minBW]
{{stepfactor -> --- - ---
 numChannels

To make this even easier to use, we can substitute this expression for the proper stepfactor into
the equation for the center frequency. This gives us

fixedChannelCF=Simplify[cfsoln/.stepSoln]

{cf -> -(EarQ minBW) + E

 (i (-Log[fn + EarQ minBW] + Log[lowFreq + EarQ minBW]))/numChan n

 (fn + EarQ minBW)}

cf/.fixedChannelCF/.GlasbergBandwidthParms/.fn->8000/.
numChannels->100/.lowFreq->100/.i->59

1002.3

Note that channel 0 is at the Nyquist rate. We should probably use channels 1 through
numChannels when we design the filter bank. The plot below shows the center frequency for
each of the 101 channels that range from the Nyquist rate (8000Hz) to 100Hz.

Patterson’s Ear Model 6

Plot[cf/.fixedChannelCF/.GlasbergBandwidthParms/.
numChannels->100/.lowFreq->100/.fn->8000,
{i,0,100}];

20 40 60 80 100

2000

4000

6000

8000

Patterson’s Ear Model 7

3.0 Gammatone Filters
Roy Patterson’s ear model is based on impulse responses of the form

 n - 1
 a t Cos[2 Pi fc t + phi]
g[t] = ----------------------------- ----------------------------
 2 Pi b t
 E

Here is the expected impulse response for a cochlear channel centered at 1000Hz (fc), a
bandwidth (b) of 125Hz, and order (n) 4.

Plot[t^(4-1)E^(-2 Pi 125 t)Cos[2 Pi 1000 t],{t,0,.015}];

0.0020.0040.0060.008 0.01 0.0120.014

 -9
-2. 10

 -9
-1. 10

 -9
1. 10

 -9
2. 10

Patterson recommends setting the bandwidth, b, in the Gammatone filter to 1.019 times the ERB.

Martin Cooke [Cooke1991] describes an implementation that is similar to the one developed here,
but not quite as efficient. Cooke develops a digital filter for the baseband Gammatone filter using
the impulse invariance transformation. The original sound is first multiplied by a complex
exponential at the desired center frequency, then filtered with a baseband Gammatone filter, then
post-multiplied by the same exponential. The filter is a fourth order filter but with complex data so
the net computational effort for the filter is the same as an eighth order filter. The filter described
in this report is an eighth order filter, but doesn’t need the pre- and post-modulations by a
complex exponential. This difference is shown in the following figure. In both implentations, the

cost of G(ω) is equivalent to an eighth order digital filter.

X X

Cooke Implementation New Implementation

Gbase(ω) Gcf(ω)

ei 2π fc t

Patterson’s Ear Model 8

Section 3 of this report describes the properties and Laplace Transform of a Gammatone filter.
First, in Section 3.1, the Laplace transform of the Gammatone filter is derived. In Section 3.2 the
properties of this filter are explored. Sections 3.3 and 3.4 show how to convert the continuous
Gammatone filter into a digital filter. Section 3.3 shows a numerical example while 3.4 shows
the more general symbolic result. Finally, Section 3.5 shows a simplied version of the
Gammatone filter without the zeros in the original filter. This all-pole version will be
approximately half the computational cost of the exact formulation but will not be quite as sharp
on the low frequency side of the resonance.

3.1 Laplace Transform

It would be nice if we could implement a channel of this ear model as a simple digital filter instead
of the frequency-domain methods that have been used in the past. The damped exponential looks
particularly easy to deal with. First let’s recall a few Laplace transforms:

 f[t]
F[s] = Integrate[----, {t, 0, Inf}] ---
 t s
 E

f[t] -> F[s]

t f[t] -> -F'[s]

 n n
t f[t] -> (-1) D[F[s], {s, n}]

In Mathematica notation, D[F[s],{s,n}] indicates the n-th derivative of the function F[s] with
respect to variable s. Finally, the following Laplace tranform pair is used [CRC1966].

Cos[w t] s + B
-------- -> -------------------- ------------
 B t 2 2
 E (s + B) + w

Note that later we will replace B with 2πb or 2π 1.019 ERB(f) and w will be replaced with 2π cf.
We ignore the optional phase term in the original Gammatone function because it is a minor effect
which we do not feel is important for later processing. Now combining this identity with the

Laplace transform of a function multiplied by tn we get

 n
t Cos[w t] n s + B
----------- -> (-1) D[-------------, {s, n}]---------- ------------
 B t 2 2
 E (s + B) + w

This is the basic form that we want. Let’s see what derivatives do to the filter. According to
Patterson [Patterson1992], we are mostly interested in the fourth order Gammatone filter, or
n=4. Thus we are interested in the third derivative of the Gammatone function above. Here are

the first three derivatives. We have ignored the factor of (-1)n because we will later normalize the

gain of each filter.

 s + B
firstGammaLaplace = -------------; ------------
 2 2
 (s + B) + w

Patterson’s Ear Model 9

D[firstGammaLaplace,{s,1}]

 2
 -2 (B + s) 1
---------------- + ---------------------------- ------------
 2 2 2 2 2
((B + s) + w) (B + s) + w

D[firstGammaLaplace,{s,2}]

 3
 8 (B + s) 6 (B + s)
---------------- - ------------------------------- ---------------
 2 2 3 2 2 2
((B + s) + w) ((B + s) + w)

filter = D[firstGammaLaplace,{s,3}]

 4 2
 -48 (B + s) 48 (B + s) 6
---------------- + ---------------- - ------------------------------- --------------- ---------------
 2 2 4 2 2 3 2 2 2
((B + s) + w) ((B + s) + w) ((B + s) + w)

We have saved this filter by storing it in a variable called filter. What does this look like when it
is all put together? The Mathematica function Together will simplify the filter function.

rationalFilter = Together[filter]

 4 3 2 2 3 4 2 2 2
(6 (-B - 4 B s - 6 B s - 4 B s - s + 6 B w + 12 B s w +

 2 2 4 2 2 2 4
 6 s w - w)) / (B + 2 B s + s + w)

Ahh, this is interesting. The highest order of s in the numerator or the denominator is eight. Thus
an eighth order filter can be used to implement the fourth order gammatone filter.

The expression in the denominator has two unique solutions, but each root is duplicated four
times. Thus we have a set of four conjugate pole-pairs, all at the same location. Where are the
zeros? We use the Mathematica function Solve to find the complex frequencies, s, where the
numerator goes to zero.

zeros = Simplify[Solve[Numerator[rationalFilter]==0,s]]

 3/2 3/2
{{s -> -B + Sqrt[3 + 2] w}, {s -> -B - Sqrt[3 + 2] w},

 3/2 3/2
 {s -> -B + Sqrt[3 - 2] w}, {s -> -B - Sqrt[3 - 2] w}}

Which can be simplified to the following list (thanks to John Holdworth for pointing this out):

{{s -> -B + (1 + Sqrt[2]) w}, {s -> -B - (1 + Sqrt[2]) w},

 {s -> -B + (-1 + Sqrt[2]) w}, {s -> -B - (-1 + Sqrt[2]) w}}

The Mathematica function N is used to convert the roots in the list above into floating point
numbers. We lose precision when we do this, so we save this for last.

N[zeros]

{{s -> -1. B + 2.41421 w}, {s -> -1. B - 2.41421 w},

 {s -> -1. B + 0.414214 w}, {s -> -1. B - 0.414214 w}}

Patterson’s Ear Model 10

This is a constellation of zeros around the point –B. Two zeros move left and right along the real
axis by 2.414w, two other zeros move along the real axis by .414w.

It is interesting to note that if we define the impulse response with a sine instead of a cosine that
one of the zeros disappear. The intial Laplace transform has two poles and no zeros. As we take
each derivative in the Laplace domain (equivalent to multiplying the impulse response by t) we
gain an extra zero. The resulting impulse response has just three zeros. We will expand on this in
a later section.

firstSineGammaLaplace=B/((s+B)^2+w^2);

Solve[Numerator[D[firstSineGammaLaplace,{s,3}]]==0,s]

{{s -> -B}, {s -> -B + w}, {s -> -B - w}}

We can solve a similar equation to find the roots of the Gammatone filter denominator. In this
case there are four sets of complex-conjugate pole pairs. We put them in a list called poles for
later reference.

poles = Simplify[Solve[Denominator[rationalFilter]==0,s]]

{{s -> -B + I w}, {s -> -B - I w}, {s -> -B + I w}, {s -> -B - I w},

 {s -> -B + I w}, {s -> -B - I w}, {s -> -B + I w}, {s -> -B - I w}}

We can now plot the location of these poles and zeros assuming a gammatone filter with a
bandwidth of 125Hz and a center frequency of 1000Hz (this approximates a 1000Hz cochlear
channel.) In the graph below, the four zeros are shown along the real (horizontal) axis. There
are four sets of poles at each of the dots indicated near ±6000j (which indicates a resonance near
1000Hz.)

PlotPolesWithDots[complexpolelist_]:=
ListPlot[Map[{Re[#],Im[#]}&,complexpolelist],

Prolog->{AbsolutePointSize[10]},
AspectRatio->Automatic,
DisplayFunction->Identity];

Show[{PlotPolesWithDots[N[Map[Part[#,1,2]&,poles]/.
B->2 Pi 125/.w->2 Pi f/.f->1000]],

PlotPolesWithDots[N[Map[Part[#,1,2]&,zeros]/.
B->2 Pi 125/.w->2 Pi f/.f->1000]]},

DisplayFunction->$DisplayFunction];

-15000 -10000 -5000 5000 10000 15000

-6000

-4000

-2000

2000

4000

6000

Patterson’s Ear Model 11

3.2 Signal Processing

This section analyses the continuous Gammatone filter and shows some of its properties. We will
use an ERB filter centered at 1000 Hz to illustrate the following two sections. First, let’s load a
package of filter design and signal processing routines [Slaney1993].

<<FilterDesign

We can define a filter function, F[s, cf], which is the desired ERB filter as a function of complex
frequency s, and desired characteristic frequency cf.

F[s_, cf_] := Release[rationalFilter/.
B->(2 Pi 1.019 ERB[cf,EarQ,minBW,order])/.
GlasbergBandwidthParms/.
w->2 Pi cf]

N[F[s, 1000]]

 15 11 8 2 3
(6. (-1.38824 10 + 3.99865 10 s + 2.32543 10 s - 3396.92 s -

 4 7 2 4
 1. s)) / (4.01996 10 + 1698.46 s + s)

Let’s plot the filter’s response. We normalize the filter by its response at 1000Hz so that we get a
dB scale in terms of the maximum response.

ContinuousFreqResponse[F[s,1000]/
ContinuousFilterMag[F[s,1000],1000],
5000];

1000 2000 3000 4000 5000
 Hz

Response

-100

-80

-60

-40

-20

dB

Just to make sure, let’s find the 3dB points of this filter. The FilterSearch routine finds the
frequency that gives an arbitrary response. First, look for the point that is 3dB down in the
octave (500->1000 Hz) below the CF, and then find it in the octave above. After determining the
3dB points, the filter’s quality factor can be calculated.

Patterson’s Ear Model 12

lower3dB = FilterSearch[F[s,1000],
N[ContinuousFilterMag[F[s,1000],1000]

*Sqrt[2]/2],
500,1000]

941.209

upper3dB = FilterSearch[F[s,1000],
N[ContinuousFilterMag[F[s,1000],1000]

*Sqrt[2]/2],
1000,2000]

1058.79

The bandwidth of this filter is equal to

upper3dB - lower3dB

117.58

Finally, the Q3dB is given by

1000/(upper3dB - lower3dB)

8.50485

The ERB here is close to the 3dB bandwidth.

ERB[1000,EarQ,minBW, order]/.GlasbergBandwidthParms

132.639

The filter design package [Slaney1993] wants to represent filters in terms of a structure called the
GZP, or Gain-Zeros-Poles. These lists are easier to work with than polynomial equations and are
simply a list of poles and zeros of the filter. The Map function allows us to pick apart the
solutions stored in the poles and zeros variables computed in Section 3.1. The gain term, first
element in the list, is equal to six over the gain of the original F[s] filter at 1000Hz. We want to
normalize the filter so it has unity gain and the six comes from the original rationalFilter
definition.

GZP = List[6/N[ContinuousFilterMag[F[s,1000],1000]],
Map[Last,zeros,2],
Map[Last,poles,2]]/.w->2 Pi cf

 12 3/2
{1.04021 10 , {-B + 2 Sqrt[3 + 2] cf Pi,

 3/2 3/2
 -B - 2 Sqrt[3 + 2] cf Pi, -B + 2 Sqrt[3 - 2] cf Pi,

 3/2
 -B - 2 Sqrt[3 - 2] cf Pi},

 {-B + 2 I cf Pi, -B - 2 I cf Pi, -B + 2 I cf Pi, -B - 2 I cf Pi,

 -B + 2 I cf Pi, -B - 2 I cf Pi, -B + 2 I cf Pi, -B - 2 I cf Pi}}

We compute the exact numerical version of this GZP structure, this time assuming a 1000Hz
filter, so that we have exact numbers to talk about. We’ll plot the resulting filter, just to make
sure that we have still have a bandpass filter at 1000Hz.

Patterson’s Ear Model 13

numGZP = N[GZP/.B->2 Pi 1.019 ERB[cf,EarQ,minBW,order]/.
GlasbergBandwidthParms/.cf->1000]

 12
{1.04021 10 , {14319.7, -16018.2, 1753.35, -3451.81},

 {-849.23 + 6283.19 I, -849.23 - 6283.19 I, -849.23 + 6283.19 I,

 -849.23 - 6283.19 I, -849.23 + 6283.19 I, -849.23 - 6283.19 I,

 -849.23 + 6283.19 I, -849.23 - 6283.19 I}}

FilterFromGZP[numGZP]

 12
1.04021 10 (-14319.7 + s) (-1753.35 + s) (3451.81 + s) (16018.2 + s)
--- --
 4 4
 (849.23 - 6283.19 I + s) (849.23 + 6283.19 I + s)

ContinuousFreqResponse[FilterFromGZP[numGZP],3000];

500 1000 1500 2000 2500 3000
 Hz

Response

-80

-60

-40

-20

dB

3.3 Numerical Z-Transform

We can implement the fourth-order Gammatone impulse response as a cascade of four
second-order filters. The analysis to this point is in the Laplace, or continuous domain. We need
to convert these filters into their equivalent sampled form for use in a program. This section
describes this conversion using the numerical example shown in the previous section; Section 3.4
describes the more general symbolic method.

An easy way to convert a continuous (analog) filter into its digital equivalent is to use the impulse
invariance design technique. The impulse invariance technique maps a continuous filter into an
equivalent sampled version by matching the impulse response in the time domain. But, due to
aliasing, this might not be the most accurate result. Cooke’s report addresses several alternatives
and concludes that the impulse invariance technique is most accurate for baseband gammatone
filters because there is very little aliasing. In our case, since the desired filter responses are
defined in terms of their impulse response, the impulse invariance design technique seems the
most natural.

The impulse invariance filter transformation requires that we expand the filter into its partial
fractions expansion, and then replace each pole by its discrete equivalent. A single pole has a

Patterson’s Ear Model 14

simple impulse response (it’s just a decaying exponential) so the equivalent digital filter is a single
discrete pole.

The final digital filter will be a cascade of four biquadratic sections per cochlear channel. This
costs us 20 multiplies and 12 adds per channel.

Unfortunately, we can’t do a simple partial fractions expansion because we have multiple poles at
the same location. Instead we split the filter into a cascade of four biquadratic sections. We first
group the poles into complex-conjugate pairs. We will form four filters by taking part of the
gain, two of the zeros, and a pair of poles. Since we have four zeros, we’ll assign one zero to
each of the four filters. A continuous filter with a complex root is transformed into a digital filter
with complex coefficients. But by combining the result of transforming two complex conjugate
poles, the resulting digital filter has real coefficients.

conjugatePoles = GroupRoots[numGZP[[3]]]

{{-849.23 + 6283.19 I, -849.23 - 6283.19 I},

 {-849.23 - 6283.19 I, -849.23 + 6283.19 I},

 {-849.23 + 6283.19 I, -849.23 - 6283.19 I},

 {-849.23 - 6283.19 I, -849.23 + 6283.19 I}}

gammaZeros = numGZP[[2]]

{14319.7, -16018.2, 1753.35, -3451.81}

We really should keep the gain in each filter, perhaps putting 1/4 of the gain into each filter. But
this makes the numbers weird, and make it hard to see the right answer. Let’s arbitrarily set the
gain of each of the following four filters to 1. Later we will adjust the gain numerically, if needed.
Each filter has two conjugate poles and a single zero along the real axis.

filter1 = List[1, List[gammaZeros[[1]]],
conjugatePoles[[1]]]

filter2 = List[1, List[gammaZeros[[2]]],
conjugatePoles[[2]]]

filter3 = List[1,List[gammaZeros[[3]]],
conjugatePoles[[3]]]

filter4 = List[1,List[gammaZeros[[4]]],
conjugatePoles[[4]]]

{1, {14319.7}, {-849.23 + 6283.19 I, -849.23 - 6283.19 I}}

{1, {-16018.2}, {-849.23 - 6283.19 I, -849.23 + 6283.19 I}}

{1, {1753.35}, {-849.23 + 6283.19 I, -849.23 - 6283.19 I}}

{1, {-3451.81}, {-849.23 - 6283.19 I, -849.23 + 6283.19 I}}

For each filter, we use the StandardZTransform function to map the biquadratic (continuous
domain) filter into the equivalent Z-domain filter. The z-domain filters can be implemented on a
digital computer. We do this for each of the specific four filters we designed at 1000Hz to make
sure we can do this properly. The StandardZTransform function converts a list of poles in
GZP format into a rational function of the variable z.

We use the Simplify function to put the equations in the canonical form.

Patterson’s Ear Model 15

zfilt1 = Simplify[StandardZTransform[filter1, 1/16000]]

0.0000625 (-1.75224 + z) z

 2
0.899286 - 1.75224 z + z

The frequency response of this filter is found by substituting e i 2π f/fs for z in the above

equation with f set to the frequency of interest and fs set to the digital sampling rate (16000 in this
example)

FreqResponse[zfilt1,16000];

2000 4000 6000 8000
 Hz

Response

-80

-75

-70

-65

-60

dB

Finally, we can use the FindImpulseResponse function to digitally simulate the resulting filter
and show its response.

ListPlot[FindImpulseResponse[zfilt1,50],PlotJoined->True];

10 20 30 40 50

-0.0001

-0.00005

0.00005

zfilt2 = Simplify[StandardZTransform[filter2, 1/16000]]

 2
 0.0000625 z

 2
0.899286 - 1.75224 z + z

Patterson’s Ear Model 16

FreqResponse[zfilt2,16000];

2000 4000 6000 8000
 Hz

Response

-80

-70

-60

dB

ListPlot[FindImpulseResponse[zfilt2,50],PlotJoined->True];

10 20 30 40 50

-0.00005

0.00005

0.0001

zfilt3 = Simplify[StandardZTransform[filter3, 1/16000]]

0.0000625 (-1.02644 + z) z

 2
0.899286 - 1.75224 z + z

Patterson’s Ear Model 17

FreqResponse[zfilt3,16000];

2000 4000 6000 8000
 Hz

Response

-90

-85

-80

-75

-70

-65

dB

ListPlot[FindImpulseResponse[zfilt3,50],PlotJoined->True];

10 20 30 40 50

-0.00004

-0.00002

0.00002

0.00004

0.00006

zfilt4 = Simplify[StandardZTransform[filter4,1/16000]]

0.0000625 (-0.725803 + z) z

 2
 0.899286 - 1.75224 z + z

Patterson’s Ear Model 18

FreqResponse[zfilt4,16000];

2000 4000 6000 8000
 Hz

Response

-85

-80

-75

-70

-65

dB

ListPlot[FindImpulseResponse[zfilt4,50],PlotJoined->True];

10 20 30 40 50

-0.00004

-0.00002

0.00002

0.00004

0.00006

Finally, we can plot the response for the cascade of all four filters.

FreqResponse[Release[zfilt1 zfilt2 zfilt3 zfilt4/
FilterMag[zfilt1 zfilt2 zfilt3 zfilt4,1000, 16000]], 16000]

2000 4000 6000 8000
 Hz

Response

-120

-100

-80

-60

-40

-20

dB

Patterson’s Ear Model 19

3.4 Symbolic Z-Transform

This section derives the digital filter that approximates a Gammatone function with center

frequency w=2π fc and a bandwidth of B radians. The symbolic Laplace transform for this
function was derived in Section 3.1.

Unfortunately, the StandardZTransform code used in Section 3.3 needs numeric values for
the poles so they can be sorted and conjugate pole pairs can be found. But in this case we have a
symbolic expression for the conjugate pole pair. So, instead let’s write a simple function that
performs the transformation. Recall, we first expand the transfer function into its partial fractions
expansion. This gives us an expression for the filter stage in the following form.

 r1 r2
------ + ----------- -----
s - p1 s - p2

In the partial fractions expansion, r1 and r2 are the residues of the original filter function when
evaulated at p1 and p2. We find the z-transform of the equivalent impulse invariant filter,
assuming a sampling interval of T, by replacing the simple s-domain pole with a modified
z-domain pole.

 r T r T r z
----- -> -------- = ------------ ------- -------
s - p T p T p
 E z - E
 1 - ---- ---
 z

The following function is used to make this transformation. The variables r1 and r2 hold the two
residues. The local variable filt is used to hold the filter, and a number of simplifications are
performed to reduce the result into its canonical form.

SymbolicZTransform[{gain_, zeros_, {p1_,p2_}}, T_] :=
Block[{r1, r2, filt},

r1 = Simplify[EvaluateGZP[gain, zeros, {p2}, p1]];
r2 = Simplify[EvaluateGZP[gain, zeros, {p1}, p2]];
(* Print["Residue 1 is ", r1]; *)
(* Print["Residue 2 is ", r2]; *)
filt = Together[(T r1)/(1-E^(T p1)/z) +

(T r2)/(1-E^(T p2)/z)];
filt = Collect[Simplify[ComplexExpand[Numerator[filt]]],z] /

Collect[Simplify[ComplexExpand[Denominator[filt]]]
Return[filt]
]

We first test it on a numeric filter we’ve already seen. Within the limits of floating point
accuracy, we get the same result:

Patterson’s Ear Model 20

SymbolicZTransform[filter1, 1/16000]

 2
-0.000109515 z + 0.0000625 z

 2
 0.899286 - 1.75224 z + z

Here’s the real result. Let’s take the first two zeros and two of the conjugate poles and compute
the equivalent impulse invariant filter.

zfilt1 = SymbolicZTransform[{1,{GZP[[2]][[1]]},
{GZP[[3]][[1]], GZP[[3]][[2]]}},T]

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 + 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ + ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

zfilt2 = SymbolicZTransform[{1,{GZP[[2]][[2]]},
{GZP[[3]][[1]], GZP[[3]][[2]]}},T]

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 + 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ - ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

zfilt3 = SymbolicZTransform[{1,{GZP[[2]][[3]]},
{GZP[[3]][[1]], GZP[[3]][[2]]}},T]

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 - 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ + ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

zfilt4 = SymbolicZTransform[{1,{GZP[[2]][[4]]},
{GZP[[3]][[1]], GZP[[3]][[2]]}},T]

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 - 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ - ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

Patterson’s Ear Model 21

This is the completely general result. We can plug in any sampling interval and any center
frequency to get the filter somewhere along the Basilar Membrane. We set the cf to 1000 and the
sampling interval (T) to 1/16000 so we can compare it to the result above.

Simplify[N[zfilt3/.B->(2 Pi 1.019 ERB[cf,EarQ,minBW,order])/.
GlasbergBandwidthParms/.
cf->1000/.
T->1/16000]]

0.0000625 (-1.02644 + z) z

 2
0.899286 - 1.75224 z + z

Now, to create a family of frequency responses, we would like to have a little function that puts
everything together, simplifies, and adjusts the gain. This function is called MakeERBFilter
and takes two arguments, the center frequency and the sampling rate, fs.

MakeERBFilter[centerfreq_, fs_] :=
Block[{filter, gain},

filter = Simplify[zfilt1 zfilt2 zfilt3 zfilt4/.
B->(2 Pi 1.019 ERB[cf,EarQ,minBW,order]) /
GlasbergBandwidthParms/.cf->centerfreq/.
T->1/fs];

filter = Simplify[N[filter]];
gain = N[FilterMag[filter, centerfreq, fs]];
Return[filter/gain]

]

Let’s plot a few of these digital Gammatone filters. Here’s the result. We limit the dB range from
{-70 to 0} to keep the plot looking reasonable.

Show[Table[FreqResponse[MakeERBFilter[125*2^i,16000], 16000,
{PlotRange->{-70,0},
 DisplayFunction->Identity}],

{i,5}],
DisplayFunction->$DisplayFunction];

2000 4000 6000 8000
 Hz

Response

-70

-60

-50

-40

-30

-20

-10

dB

Patterson’s Ear Model 22

3.5 All-Pole Gammatone Approximation

All of the zeros in the Gammatone filter, rationalFilter, are on the real axis. This means that the
zeros have a small effect near the center frequency of each filter. By ignoring the zeros in the
original filter we cut the computation effort nearly in half, at some reduction in the filter’s
attenuation near DC. This means that we have four second order sections, each with the identical
set of conjugate poles near the resonant frequency.

twopolefilt = SymbolicZTransform[{1,{},
{GZP[[3]][[1]], GZP[[3]][[2]]}},T]

 -2 T z Sin[2 cf Pi T]

 B T -4 cf Pi 2 8 cf Pi z Cos[2 cf Pi T]
E (-------- - 4 cf Pi z + ------------------------) ------- -----------------------
 2 B T B T
 E E

We can now plot the response for a cascade of four of these second order sections. The
bandwidth is similar to the exact solution but now there is less attenuation at DC.

MakePoleERBFilter[centerfreq_, fs_] :=
Block[{filter, gain},

filter = Simplify[twopolefilt twopolefilt twopolefilt
twopolefilt/.

B->(2 Pi 1.019 ERB[cf,EarQ,minBW,order]) /
GlasbergBandwidthParms/.cf->centerfreq/.
T->1/fs];

filter = Simplify[N[filter]];
gain = N[FilterMag[filter, centerfreq, fs]];
Return[filter/gain]

]

Show[Table[FreqResponse[MakePoleERBFilter[125*2^i,16000], 16000,
{PlotRange->{-70,0},
 DisplayFunction->Identity}],

{i,5}],
DisplayFunction->$DisplayFunction];

2000 4000 6000 8000
 Hz

Response

-70

-60

-50

-40

-30

-20

-10

dB

Patterson’s Ear Model 23

Some versions of Mathematica include a package that performs Laplace Transforms. We use this
package to derive the impulse response of the all-pole approximation to the fourth order
Gammatone filter. We invert four copies of the two conjugate poles described in Section 3.1.

<<LaplaceTransform.m

InverseLaplaceTransform[1/((B+s)^2+w^2)^4,s,t]

5 I -I t (-I B + w) 5 I I t (I B + w)
--- E --- E-- --
32 32
-------------------- - ------------------ - ------------------- -----------------
 7 7
 w w

 -I t (-I B + w) I t (I B + w)
 5 E t 5 E t
 -------------------- - ------------------ - ------------------- -----------------
 6 6
 32 w 32 w

 I -I t (-I B + w) 2 I I t (I B + w) 2
 -- E t -- E t - -
 16 16
 ---------------------- + -------------------- + --------------------- -------------------
 5 5
 w w

 -I t (-I B + w) 3 I t (I B + w) 3
 E t E t
 ------------------- + ----------------- ------------------ ----------------
 4 4
 96 w 96 w

We can’t convince Mathematica to simplify this expression, but if we combine complex
exponentials by hand we get the following equivalent form. Note that it is a function of the first
four Gammatone filters.

 2 3
5 Sin[w t] 5 t Cos[w t] t Sin[w t] t Cos[w t]
---------- - ------------ - ----------- + -------------------- ----------- ---------- ----------
 7 6 5 4
 16 w 16 w 8 w 48 w

 B t
 E

Finally, here is the resulting theoretical impulse response for a 1000Hz all-pole Gammatone with
a 125Hz bandwidth.

Patterson’s Ear Model 24

Plot[Release[10^26*E^(-B*t)(5*Sin[w*t]/16/w^7-
5*t*Cos[w*t]/16/w^6-t^2*Sin[w*t]/8/w^5+
t^3*Cos[w*t]/48/w^4)/.

B->2*Pi*125/.w->2*Pi*1000],{t,0,250/16000},
PlotRange->All];

0.0025 0.005 0.0075 0.01 0.0125 0.015

-3

-2

-1

1

2

3

3.6 Testing

These are some simple test results. Compare them to the output of other implementations to
verify that your program is correct.. We’ll compute the results for two different filter locations,
the first channel and the (arbitrary) 23rd channel. For each channel we compute the center
frequency and the four digital filters. We use Glasberg’s function for the ERB, overlap each filter
by 50%, and assume a sampling rate of 16000 Hz.

f=cf/.cfsoln/.GlasbergBandwidthParms/.stepfactor->.5/.
 fn->8000/.i->1

7567.67

N[zfilt1/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
-0.0000515667 z - 0.000125 z

 2
-1.01983 - 2.81527 z - 2. z

N[zfilt2/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
-0.000124388 z - 0.000125 z

 2
-1.01983 - 2.81527 z - 2. z

Patterson’s Ear Model 25

N[zfilt3/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
-0.0000817302 z - 0.000125 z

 2
-1.01983 - 2.81527 z - 2. z

N[zfilt4/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
-0.0000942243 z - 0.000125 z

 2
-1.01983 - 2.81527 z - 2. z

FreqResponse[zfilt1 zfilt2 zfilt3 zfilt4 /.
cf->f/.B->
2*Pi*1.019*ERB[f,EarQ,minBW,order]/.T->1/16000/.
GlasbergBandwidthParms,

16000];

2000 4000 6000 8000
 Hz

Response

-340

-330

-320

-310

-300

dB

Now, let’s look at the 23rd channel.

f=cf/.cfsoln/.GlasbergBandwidthParms/.stepfactor->.5/.
 fn->8000/.i->23

2149.37

N[zfilt1/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
0.000278461 z - 0.000125 z

 2
-1.62857 + 2.39829 z - 2. z

Patterson’s Ear Model 26

N[zfilt2/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
-0.000128568 z - 0.000125 z

 2
-1.62857 + 2.39829 z - 2. z

N[zfilt3/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
0.000109864 z - 0.000125 z

 2
-1.62857 + 2.39829 z - 2. z

N[zfilt4/.cf->f/.B->2*Pi*1.019*ERB[f,EarQ,minBW,order]/.
GlasbergBandwidthParms/.T->1/16000]

 2
0.0000400291 z - 0.000125 z

 2
-1.62857 + 2.39829 z - 2. z

FreqResponse[zfilt1 zfilt2 zfilt3 zfilt4 /.
cf->f/.B->
2*Pi*1.019*ERB[f,EarQ,minBW,order]/.T->1/16000/.
GlasbergBandwidthParms,

16000];

2000 4000 6000 8000
 Hz

Response

-360

-340

-320

-300

-280

-260

dB

Patterson’s Ear Model 27

4.0 Implementation
This section of this report will describe two different implementations of the Gammatone filters.
Section 4.1 will describe the implementation using second order filters. Section 4.2 will describe
the implementation using the MATLAB digital signal processing environment.

4.1 Second-Order Section Implementation

We have designed four different digital filter stages. Together they implement a fourth order
Gammatone filterbank as an eighth order digital filter. Each of these stages is a second order
(biquadratic) digital filter. The four digital filters are shown below.

zfilt1

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 + 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ + ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

zfilt2

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 + 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ - ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

zfilt3

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 - 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ + ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

zfilt4

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 - 2] T Sin[2 cf Pi T]
-2 T z + z (------------------ - ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 -2 2 4 z Cos[2 cf Pi T]
 ------ - 2 z + ------------------ ----- -----------------
 2 B T B T
 E E

The total filter is given by the equation:

Patterson’s Ear Model 28

GammaFilt = (zfilt1 zfilt2 zfilt3 zfilt4)

 3/2
 2 2 T Cos[2 cf Pi T] 2 Sqrt[3 - 2] T Sin[2 cf Pi T]
((-2 T z + z (------------------ - ---------------------------------) ----------------- --------------------------------
 B T B T
 E E

 2 2 T Cos[2 cf Pi T]
 (-2 T z + z (------------------ + -----------------
 B T
 E

 3/2
 2 Sqrt[3 - 2] T Sin[2 cf Pi T]
 ---------------------------------)) --------------------------------
 B T
 E

 2 2 T Cos[2 cf Pi T]
 (-2 T z + z (------------------ - -----------------
 B T
 E

 3/2
 2 Sqrt[3 + 2] T Sin[2 cf Pi T]
 ---------------------------------)) --------------------------------
 B T
 E

 2 2 T Cos[2 cf Pi T]
 (-2 T z + z (------------------ + -----------------
 B T
 E

 3/2
 2 Sqrt[3 + 2] T Sin[2 cf Pi T]
 ---------------------------------))) / --------------------------------
 B T
 E

 -2 2 4 z Cos[2 cf Pi T] 4
 (------ - 2 z + ------------------) ----- -----------------
 2 B T B T
 E E

To calculate any one channel of the Patterson filter bank we need to substitute appropriate values
for the center frequency (cf), bandwidth (b), and sampling interval (T). The center frequency is
determined by position along the Basilar Membrane and is a free parameter. In Patterson’s model

the bandwidth is fixed at (2π 1.019 ERB[cf]). The sampling interval is generally a function of the
sound input system.

Each of the four filter stages is implemented with the following filter structure. After performing
the indicated substitutions the 5 filter coefficients can be calculated and used to perform the digital
filter. The two equivalent equations below are implemented by the digital filter diagrammed.

 A1 A2
A0 + -- + -- - -
 z 2 2
 z A0 z + A1 z + A2
------------ = ---------------------------- ----------------
 B1 B2 2
1 + -- + -- z + B1 z + B2 - -
 z 2
 z

Patterson’s Ear Model 29

Z
-1

Z
-1

 +

 +

 +

B1

B2

A 1

A 0

A
2

Input Output

-

-

X

X

X

X

X

Finally, here is the resulting time-domain impulse response for a fourth-order Gammatone filter,
calculated by simulating the filter in the time-domain.

numGammaFilt = Simplify[N[GammaFilt/.B->2*Pi*125/.
cf->1000/.
T->1/16000]];

numGammaPoints = FindImpulseResponse[numGammaFilt,250];
ListPlot[numGammaPoints, PlotJoined->True];

50 100 150 200 250

 -14
-3. 10

 -14
-2. 10

 -14
-1. 10

 -14
1. 10

 -14
2. 10

 -14
3. 10

We can also compare this result to the theoretical result.

numGammaTheory = Table[N[t^(4-1)E^(-2 Pi 125 t)Cos[2 Pi 1000 t]/.
t->i/16000],{i,0,249}];

Patterson’s Ear Model 30

We normalize both the digitally simulated Gammatone impulse response,
numGammaPoints, and the exact values, numGammaTheory, by dividing by their average
RMS value.

numGammaPoints = numGammaPoints/
Sqrt[Apply[Plus,Map[#^2&,numGammaPoints]]];

numGammaTheory = numGammaTheory/
Sqrt[Apply[Plus,Map[#^2&,numGammaTheory]]];

We subtract the two lists of points to see the error. The following plot overlays the theoretical, the
digital simulation, and the resulting error curves.

Show[{ListPlot[numGammaTheory,DisplayFunction->Identity,
PlotJoined->True],

ListPlot[numGammaPoints,DisplayFunction->Identity,
PlotJoined->True],

ListPlot[numGammaPoints-numGammaTheory,
PlotJoined->True, DisplayFunction->Identity]}

DisplayFunction->$DisplayFunction, PlotRange->All];

50 100 150 200 250

-0.15

-0.1

-0.05

0.05

0.1

0.15

This error signal has an average (RMS) error of

Sqrt[Apply[Plus,Map[#^2&,numGammaPoints-numGammaTheory]]]

0.0435394

And the error is distributed across the frequency spectrum as shown in the following plot. We
plot only the first half of the Fourier transform, from DC to the Nyquist frequency.

Patterson’s Ear Model 31

ListPlot[Take[dB[Abs[Fourier[numGammaPoints-numGammaTheory]]],128],
PlotJoined->True];

20 40 60 80 100 120

-100

-60

-40

Finally, the all-pole gammatone approximation shown in Section 3.5 has the impulse response
shown in the plot below.

numAllPoleFilt = Simplify[N[10^30*twopolefilt^4/.B->2*Pi*125/.
cf->1000/.
T->1/16000]];

numAllPolePoints = FindImpulseResponse[numAllPoleFilt,250];
ListPlot[numAllPolePoints, PlotJoined->True,PlotRange->All];

50 100 150 200 250

-2

-1

1

2

We use the following function to calculate the filter coefficients and put them into Standard C
notation. We can then plug these equations directly into our filter design program. (Note, we

need the z–2 coefficient to be equal to one. Thus we divide both the numerator and the

denominator by B0.)

Patterson’s Ear Model 32

FilterForm[filt_] :=
Block[{term, B0},

B0 = Coefficient[Denominator[filt],z,2];
Print["B = 2*Pi*1.019*24.7*(4.37*cf/1000 + 1);"];
term = Coefficient[Numerator[filt],z,2]/B0;
Print["A0 = ", CForm[term],";"];
term = Coefficient[Numerator[filt],z,1]/B0;
Print["A1 = ", CForm[term],";"];
term = Coefficient[Numerator[filt],z,0]/B0;
Print["A2 = ", CForm[term],";"];
term = Coefficient[Denominator[filt],z,2]/B0;
Print["B0 = ", CForm[term],";"];
term = Coefficient[Denominator[filt],z,1]/B0;
Print["B1 = ", CForm[term],";"];
term = Coefficient[Denominator[filt],z,0]/B0;
Print["B2 = ", CForm[term],";"];

]

FilterForm[zfilt1]

B = 2*Pi*1.019*24.7*(4.37*cf/1000 + 1);
A0 = T;
A1 = -(2*T*Cos(2*cf*Pi*T)/Power(E,B*T) +

 2*Sqrt(3 + Power(2,3/2))*T*Sin(2*cf*Pi*T)/Power(E,B*T))/2;
A2 = 0;
B0 = 1;
B1 = -2*Cos(2*cf*Pi*T)/Power(E,B*T);
B2 = Power(E,-2*B*T);

FilterForm[zfilt2]

B = 2*Pi*1.019*24.7*(4.37*cf/1000 + 1);
A0 = T;
A1 = -(2*T*Cos(2*cf*Pi*T)/Power(E,B*T) -

 2*Sqrt(3 + Power(2,3/2))*T*Sin(2*cf*Pi*T)/Power(E,B*T))/2;
A2 = 0;
B0 = 1;
B1 = -2*Cos(2*cf*Pi*T)/Power(E,B*T);
B2 = Power(E,-2*B*T);

FilterForm[zfilt3]

B = 2*Pi*1.019*24.7*(4.37*cf/1000 + 1);
A0 = T;
A1 = -(2*T*Cos(2*cf*Pi*T)/Power(E,B*T) +

 2*Sqrt(3 - Power(2,3/2))*T*Sin(2*cf*Pi*T)/Power(E,B*T))/2;
A2 = 0;
B0 = 1;
B1 = -2*Cos(2*cf*Pi*T)/Power(E,B*T);
B2 = Power(E,-2*B*T);

Patterson’s Ear Model 33

FilterForm[zfilt4]

B = 2*Pi*1.019*24.7*(4.37*cf/1000 + 1);
A0 = T;
A1 = -(2*T*Cos(2*cf*Pi*T)/Power(E,B*T) -

 2*Sqrt(3 - Power(2,3/2))*T*Sin(2*cf*Pi*T)/Power(E,B*T))/2;
A2 = 0;
B0 = 1;
B1 = -2*Cos(2*cf*Pi*T)/Power(E,B*T);
B2 = Power(E,-2*B*T);

4.2 MATLAB Implementation

We can also generate code that will implement the Gammatone filters using the MATLAB program
[MathWorks1989]. First we need to figure out what the gain is at the center frequency. By
default we normalize each filter’s gain so it is one at the center frequency.

gammaGain = Simplify[FilterGain[GammaFilt,cf,1/T]]

 4 I cf Pi T -(B T) + 2 I cf Pi T
((-2 E T + 2 E T

 3/2
 (Cos[2 cf Pi T] - Sqrt[3 - 2] Sin[2 cf Pi T]))

 4 I cf Pi T -(B T) + 2 I cf Pi T
 (-2 E T + 2 E T

 3/2
 (Cos[2 cf Pi T] + Sqrt[3 - 2] Sin[2 cf Pi T]))

 4 I cf Pi T -(B T) + 2 I cf Pi T
 (-2 E T + 2 E T

 3/2
 (Cos[2 cf Pi T] - Sqrt[3 + 2] Sin[2 cf Pi T]))

 4 I cf Pi T -(B T) + 2 I cf Pi T
 (-2 E T + 2 E T

 3/2
 (Cos[2 cf Pi T] + Sqrt[3 + 2] Sin[2 cf Pi T]))) /

 4 I cf Pi T
 -2 4 I cf Pi T 2 (1 + E) 4
 (------ - 2 E + --------------------) ----- -------------------
 2 B T B T
 E E

Now for each center frequency we need to figure out the bandwidth at that point. Once we know
the bandwidth we can design compute the filter coefficients. This is easy, except that the MATLAB
filter function wants the coefficient of the highest power of z in the denominator to equal one.
Thus we divide all coefficients by the value of this number before we simplify the coefficients.
While we are at it, we also divide the numerator by the gain at the center frequency. This
normalizes the gain of each filter so it is unity at its center frequency. (The filter will have
non-zero phase at its center frequency.)

We use the Mathematica function FortranForm because it produces output that is closest to
MATLAB ’s format. But, we will still need to edit the functions. MATLAB assumes that arrays are
multiplied as if they were matrices. In this case, we want to operate on these arrays as if they
were vectors of individual numbers. Thus element-by-element multiply is indicated by “.*” and

Patterson’s Ear Model 34

element-by-element division is indicated by “./”. In addition, unlike Fortran which uses “**” to
indicate exponetiation, MATLAB uses “^”.

expandedGamma=Expand[Numerator[GammaFilt]]/
Expand[Denominator[GammaFilt]]

(16*T^4*z^8 - (64*T^4*z^7*Cos[2*cf*Pi*T])/E^(B*T) +
 (96*T^4*z^6*Cos[2*cf*Pi*T]^2)/E^(2*B*T) -
 (64*T^4*z^5*Cos[2*cf*Pi*T]^3)/E^(3*B*T) +
 (16*T^4*z^4*Cos[2*cf*Pi*T]^4)/E^(4*B*T) -
 (96*T^4*z^6*Sin[2*cf*Pi*T]^2)/E^(2*B*T) +
 (192*T^4*z^5*Cos[2*cf*Pi*T]*Sin[2*cf*Pi*T]^2)/E^(3*B*T) -
 (96*T^4*z^4*Cos[2*cf*Pi*T]^2*Sin[2*cf*Pi*T]^2)/E^(4*B*T) +
 (16*T^4*z^4*Sin[2*cf*Pi*T]^4)/E^(4*B*T))/
 (16/E^(8*B*T) + (64*z^2)/E^(6*B*T) + (96*z^4)/E^(4*B*T) +
 (64*z^6)/E^(2*B*T) + 16*z^8 - (128*z*Cos[2*cf*Pi*T])/E^(7*B*T) -
 (384*z^3*Cos[2*cf*Pi*T])/E^(5*B*T) -
 (384*z^5*Cos[2*cf*Pi*T])/E^(3*B*T) -
 (128*z^7*Cos[2*cf*Pi*T])/E^(B*T) +
 (384*z^2*Cos[2*cf*Pi*T]^2)/E^(6*B*T) +
 (768*z^4*Cos[2*cf*Pi*T]^2)/E^(4*B*T) +
 (384*z^6*Cos[2*cf*Pi*T]^2)/E^(2*B*T) -
 (512*z^3*Cos[2*cf*Pi*T]^3)/E^(5*B*T) -
 (512*z^5*Cos[2*cf*Pi*T]^3)/E^(3*B*T) +
 (256*z^4*Cos[2*cf*Pi*T]^4)/E^(4*B*T))

Patterson’s Ear Model 35

MatLabFilters[filt_] :=
Block[{term,B0,gain},

Print["cf = ", FortranForm[cf/.fixedChannelCF],";"];
Print["EarQ = ",EarQ/.GlasbergBandwidthParms,";"];
Print["minBW = ",minBW/.GlasbergBandwidthParms,";"];
Print["order = ",order/.GlasbergBandwidthParms,";"];
Print["ERB = ",FortranForm[ERB[cf,EarQ,minBW,order]],";"];
Print["B = 1.019*2*pi*B;"];
B0 = Coefficient[Denominator[filt],z,8];
Print["gain = abs(", FortranForm[gammaGain],");"];
term = Simplify[Coefficient[Numerator[filt],z,8]/B0];
Print["forward(:,1) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Numerator[filt],z,7]/B0];
Print["forward(:,2) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Numerator[filt],z,6]/B0];
Print["forward(:,3) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Numerator[filt],z,5]/B0];
Print["forward(:,4) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Numerator[filt],z,4]/B0];
Print["forward(:,5) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,8]/B0];
Print["feedback(:,1) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,7]/B0];
Print["feedback(:,2) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,6]/B0];
Print["feedback(:,3) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,5]/B0];
Print["feedback(:,4) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,4]/B0];
Print["feedback(:,5) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,3]/B0];
Print["feedback(:,6) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,2]/B0];
Print["feedback(:,7) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,1]/B0];
Print["feedback(:,8) = ", FortranForm[term],";"];
term = Simplify[Coefficient[Denominator[filt],z,0]/B0];
Print["feedback(:,9) = ", FortranForm[term],";"];
]

Patterson’s Ear Model 36

MatLabFilters[expandedGamma]

cf = -(EarQ*minBW) + E**

 (i*(-Log(fn + EarQ*minBW) + Log(lowFreq + EarQ*minBW))/numChanne l

 (fn + EarQ*minBW);
EarQ = 9.26449;
minBW = 24.7;
order = 1;
ERB = ((cf/EarQ)**order + minBW**order)**(1/order);
B = 1.019*2*pi*B;
gain = abs((-2*E**((0,4)*cf*Pi*T)*T +

 2*E**(-(B*T) + (0,2)*cf*Pi*T)*T*

 (Cos(2*cf*Pi*T) - Sqrt(3 - 2**(3/2))*Sin(2*cf*Pi*T)))*

 (-2*E**((0,4)*cf*Pi*T)*T +

 2*E**(-(B*T) + (0,2)*cf*Pi*T)*T*

 (Cos(2*cf*Pi*T) + Sqrt(3 - 2**(3/2))*Sin(2*cf*Pi*T)))*

 (-2*E**((0,4)*cf*Pi*T)*T +

 2*E**(-(B*T) + (0,2)*cf*Pi*T)*T*

 (Cos(2*cf*Pi*T) - Sqrt(3 + 2**(3/2))*Sin(2*cf*Pi*T)))*

 (-2*E**((0,4)*cf*Pi*T)*T +

 2*E**(-(B*T) + (0,2)*cf*Pi*T)*T*

 (Cos(2*cf*Pi*T) + Sqrt(3 + 2**(3/2))*Sin(2*cf*Pi*T)))/

 (-2/E**(2*B*T) - 2*E**((0,4)*cf*Pi*T) +

 2*(1 + E**((0,4)*cf*Pi*T))/E**(B*T))**4);
forward(:,1) = T**4;
forward(:,2) = -4*T**4*Cos(2*cf*Pi*T)/E**(B*T);
forward(:,3) = 6*T**4*Cos(4*cf*Pi*T)/E**(2*B*T);
forward(:,4) = -4*T**4*Cos(6*cf*Pi*T)/E**(3*B*T);
forward(:,5) = T**4*Cos(8*cf*Pi*T)/E**(4*B*T);
feedback(:,1) = 1;
feedback(:,2) = -8*Cos(2*cf*Pi*T)/E**(B*T);
feedback(:,3) = 4*(4 + 3*Cos(4*cf*Pi*T))/E**(2*B*T);
feedback(:,4) = -8*(6*Cos(2*cf*Pi*T) + Cos(6*cf*Pi*T))/E**(3*B*T);
feedback(:,5) = 2*(18 + 16*Cos(4*cf*Pi*T) + Cos(8*cf*Pi*T))/E**(4*B*T)
feedback(:,6) = -8*(6*Cos(2*cf*Pi*T) + Cos(6*cf*Pi*T))/E**(5*B*T);
feedback(:,7) = 4*(4 + 3*Cos(4*cf*Pi*T))/E**(6*B*T);
feedback(:,8) = -8*Cos(2*cf*Pi*T)/E**(7*B*T);
feedback(:,9) = E**(-8*B*T);

Patterson’s Ear Model 37

Here is the MATLAB code to design this filter bank.

function [forward, feedback]=MakeERBFilters(fs,numChannels,lowFreq)
% [forward, feedback]=MakeERBFilters(fs,numChannels) computes the
% filter coefficients for a bank of Gammatone filters. These
% filters were defined by Patterson and Holdworth for simulating
% the cochlea. The results are returned as arrays of filter
% coefficients. Each row of the filter arrays (forward and feedback)
% can be passed to the MatLab "filter" function, or you can do all
% the filtering at once with the ERBFilterBank() function.
%
% The filter bank contains "numChannels" channels that extend from
% half the sampling rate (fs) to "lowFreq".

T=1/fs;
% Change the following parameters if you wish to use a different
% ERB scale.
EarQ = 9.26449; % Glasberg and Moore Parameters
minBW = 24.7;
order = 1;

% All of the following expressions are derived in Apple TR #35, "An
% Efficient Implementation of the Patterson-Holdsworth Cochlear
% Filter Bank."
cf = -(EarQ*minBW)+exp((1:numChannels)'*(-log(fs/2 + EarQ*minBW) + ...
 log(lowFreq + EarQ*minBW))/numChannels) ...
 *(fs/2 + EarQ*minBW);
ERB = ((cf/EarQ).^order + minBW^order).^(1/order);
B=1.019*2*pi*ERB;
gain = abs((-2*exp(4*i*cf*pi*T)*T + ...
 2*exp(-(B*T) + 2*i*cf*pi*T).*T.* ...
 (cos(2*cf*pi*T) - sqrt(3 - 2^(3/2))* ...
 sin(2*cf*pi*T))) .* ...
 (-2*exp(4*i*cf*pi*T)*T + ...
 2*exp(-(B*T) + 2*i*cf*pi*T).*T.* ...
 (cos(2*cf*pi*T) + sqrt(3 - 2^(3/2)) * ...
 sin(2*cf*pi*T))).* ...
 (-2*exp(4*i*cf*pi*T)*T + ...
 2*exp(-(B*T) + 2*i*cf*pi*T).*T.* ...
 (cos(2*cf*pi*T) - ...
 sqrt(3 + 2^(3/2))*sin(2*cf*pi*T))) .* ...
 (-2*exp(4*i*cf*pi*T)*T+2*exp(-(B*T) + 2*i*cf*pi*T).*T.* ...
 (cos(2*cf*pi*T) + sqrt(3 + 2^(3/2))*sin(2*cf*pi*T))) ./ ...
 (-2 ./ exp(2*B*T) - 2*exp(4*i*cf*pi*T) + ...
 2*(1 + exp(4*i*cf*pi*T))./exp(B*T)).^4);
feedback=zeros(length(cf),9);
forward=zeros(length(cf),5);
forward(:,1) = T^4 ./ gain;
forward(:,2) = -4*T^4*cos(2*cf*pi*T)./exp(B*T)./gain;
forward(:,3) = 6*T^4*cos(4*cf*pi*T)./exp(2*B*T)./gain;
forward(:,4) = -4*T^4*cos(6*cf*pi*T)./exp(3*B*T)./gain;
forward(:,5) = T^4*cos(8*cf*pi*T)./exp(4*B*T)./gain;
feedback(:,1) = ones(length(cf),1);

Patterson’s Ear Model 38

feedback(:,2) = -8*cos(2*cf*pi*T)./exp(B*T);
feedback(:,3) = 4*(4 + 3*cos(4*cf*pi*T))./exp(2*B*T);
feedback(:,4) = -8*(6*cos(2*cf*pi*T) + cos(6*cf*pi*T))./exp(3*B*T);
feedback(:,5) = 2*(18 + 16*cos(4*cf*pi*T) +
cos(8*cf*pi*T))./exp(4*B*T);
feedback(:,6) = -8*(6*cos(2*cf*pi*T) + cos(6*cf*pi*T))./exp(5*B*T);
feedback(:,7) = 4*(4 + 3*cos(4*cf*pi*T))./exp(6*B*T);
feedback(:,8) = -8*cos(2*cf*pi*T)./exp(7*B*T);
feedback(:,9) = exp(-8*B*T);

The following MATLAB function applies the bank of filters to a signal, producing an array of
output signals.

function y=ERBFilterBank(forward,feedback,x)
% y=ERBFilterBank(forward,feedback,x)
% This function filters the waveform x with the array of filters
% specified by the forward and feedback parameters. Each row
% of the forward and feedback parameters are the parameters
% to the Matlab builtin function "filter".

[rows, cols]=size(feedback);
y=zeros(rows,length(x));
for i=1:rows
 y(i,:)=filter(forward(i,:),feedback(i,:),x);
end

Finally this code is tested by entering the following MATLAB (Version 3.5) commands.

impulse=[1 zeros(1,1023)];
[ERBforward,ERBfeedback]=MakeERBFilters(16000,64,20);
y=ERBFilterBank(ERBforward,ERBfeedback,impulse);

response=20*log10(abs(fft(y(1:5:64,:)')));
freqScale=(0:1023)/1024*16000;
axis([2 4 -70 10])
semilogx(freqScale(1:512),response(1:512,:))

(Note, in Version 4 of MATLAB, the axis are specified in the axis command as
[20 10000 -70 10].) This results in the following plot for the frequency response of every fifth
channel.

Patterson’s Ear Model 39

-70

-60

-50

-40

-30

-20

-10

0

10

102 103 104

A similar procedure can be used to design the all-pole implementation but this is not shown in this
report.

5.0 Acknowledgements
This approach (Laplace transform of the Gammatone function) was suggested to the author by
Richard F. Lyon. Much of the credit for this report should go to Roy Patterson and John
Holdsworth, who developed the original model. We also appreciate the help we have received
from Roy Patterson and Peter Assmann in writing this report.

Patterson’s Ear Model 40

6.0 References
[Cooke1991] Martin Cooke, “Modelling Auditory Processing and Organisation,” PhD
Dissertation, University of Sheffield, Computer Science Department, May 1991.

[CRC1966] Chemical Rubber Company, Handbook of Chemistry and Physics, Robert C. Weast
and Samuel M. Selby, eds., The Chemical Rubber Company, 1966.

[Glasberg1990] B. R. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes from
notched-noise data.” Hearing Research, vol. 47, 1990, pp. 103-108.

[Greenwood1990] Donald D. Greenwood, “A cochlear frequency-position function for several
species—29 years later,” Journal of the Acoustical Society of America, Vol. 87 (6), June 1990,
pp. 2592-2605.

[MathWorks1989] The MathWorks, Inc., MATLAB™ for Macintosh™ Computers, South Natick,
MA, 1989.

[Patterson1992] R. D. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C.Zhang, and
M. H. Allerhand, “Complex sounds and auditory images,” In Auditory Physiology and
Perception, (Eds.) Y Cazals, L. Demany, K.Horner, Pergamon, Oxford, 1992, pp. 429-446.

[Slaney1988] Malcolm Slaney, “Lyon’s Cochlear Model,” Apple Technical Report #13, Apple
Computer Corporate Library, Cupertino, CA 95014, 1988.

[Slaney1993] Malcolm Slaney, “Mathematica Filter Design,” Apple Technical Report #34, Apple
Computer Library, Cupertino, CA 95014, 1993.

[Wolfram1988] Stephen Wolfram, Mathematica: A System for Doing Mathematics by Computer,
Addison Wesley, Redwood City, CA 1988.

Patterson’s Ear Model 41

Patterson’s Ear Model 42

