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 1 - Introduction

 1.1 - About this report

This technical report describes the implementation of a model of the 
cochlea developed by Richard Lyon.  Automatic speech recognition is a 
difficult problem and by studying the human cochlea we will gain a 
better understanding of how humans perceive speech.  Hopefully this 
knowledge will help us to design better speech recognition systems.

 1.2 - About Mathematica

The words you are now reading were formatted using a revolutionary 
symbolic math program called Mathematica.  The resulting document is 
called a notebook.  Mathematica  is a symbolic math package developed by 
Wolfram Research Institute and is available on many popular computers.  
This report is available as a conventional paper document but more 
interestingly is also available as an electronic document.  Much like a 
scientist's notebook, this report is a living, breathing document.  Readers 
are encouraged to play with this notebook, modify the models and extend 
it to apply to their own research.

Mathematica is used here to describe the cochlear model for two reasons.  
First, it provides a portable way to describe the characteristics of the 
computations.  This will allow more people to understand the important 
characteristics of the model than if the model were described in a 
conventional programming language.  Secondly, and perhaps more 
importantly, because Mathematica  is a complete symbolic math package 
it allows the reader to explore the mathematics of the model.  Thus if 
the reader is unsure about a concept it is possible to play with the 
equations that are confusing.

The Mathematica  system is described in a book written by Stephen 
Wolfram called "Mathematica: A System for Doing Mathematics by 
Computer."  Like many symbolic math packages (for example Macsyma) a 
model is built using textual equations.  These equations can then be 
manipulated algebraically or actually used for computation.   In this 
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report Mathematica is mostly used for its computational ability and its 
excellent graphics.

One characteristic of a Mathematica notebook is that details of the 
model can be hidden in closed cells.  Like an outline, this notebook is 
organized into sections and subsections.  A section of this notebook is 
used to describe one part of the model (for example the filter design 
software) and subsections are used to state the equations, show 
graphical examples and perhaps include some test code.  Most readers of 
this report are probably not interested in the test code and these 
subsections can be closed so as to not clutter the report.  See the 
Mathematica  help screens for information on opening and closing 
sections of a notebook.

The information in this report is being published not only on paper but 
also on Macintosh® 3 1/2" floppy disk.  By publishing this material 
electronically we hope to give other scientists and engineers better 
acccess to this information.  Not only do we hope that readers will 
understand the model better but we hope they will be able to better apply 
it to their own work.

 1.3 - How to use this report

This report can be read two ways.  The paper copy of this notebook can be 
read like a normal report.  Readers who are not familiar with the 
Mathematica  notation used to write this report can ignore the equations.  
We have written this report so that most of the material is explained in 
text and figures.  While equations (and programs) are entered into 
Mathematica  with linear text the basic principles should be evident for 
those readers who have questions about the details.

We hope that most readers will be able to access a copy of Mathematica 
and read the electronic version of this report.   A notebook reader is 
provided on the floppy disk to allow readers to browse through the 
document but the real power of the notebook comes from interacting 
with the equations defined here.  Learning is not a one way process and 
the material will be better understood if you, the reader, can interact 
with the material as I, the author, did while writing this report.
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The best way to interact with this notebook is to read the description, 
study the examples and then modify an example to see how different 
parameters give different results.  For example an appendix to this 
report describes digital filtering and provides functions to design first 
and second order filters.  Much can be learned about digital filtering by 
combining these filters and studying the resulting frequency response or 
pole-zero plots.

Readers might also want to modify this model to better fit their own 
experience or ideas.  For example this notebook describes a relatively 
simple model of the effects of the outer and middle ears on the sound.  A 
reader might be interested in providing a better model or removing the 
outer and middle ear filters completely and studying the change in 
response.  As another example, this report describes a simple Automatic 
Gain Control (AGC) to compensate for the large range of sounds produced 
by humans.  This notebook explores several variations on the basic AGC 
but readers might want to try their own.

 1.4 - Prerequisites

This report was written for readers with some knowledge of signal 
processing.  The filters in this notebook are described using the Laplace 
and Z transforms.  While we never actually calculate a Laplace or Z 
transform, readers who are comfortable with these tranformations will 
get the most out of this notebook.   More information about digital signal 
processing can be found in [Oppenheim75].

An appendix to this report defines several functions that are used to 
design continuous and digital filters.    In the rest of this report the 
names used for these functions should be self explanatory.  For readers 
of the electronic version of this document, more information is available 
about any function by selecting the function name and picking "About the 
selection" from the menu.
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 1.5 - About This Notebook

The purpose of this notebook is to describe the design and 
implementation of a model of sound propagation in the human cochlea.  
Two versions of the cochlear model are described here.  In the model 
originally published a combination of a cascade filter bank and a parallel 
set of resonators were used.   Later it was realized that these resonators 
could be folded into the cascade filter bank to build a cascade-only 
version of the model.  It is important to realize that the behaviour of 
these two models are identical;  the change only affects the 
computational efficiency.

This report first describes the philosophy of this cochlea model and the 
two different implementation techniques are described and illustrated. 
The model of the cochlea and its implementation as a cascade filter bank 
are then described.  Finally the Automatic Gain Control (AGC) used in this 
model is explored.
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 2 - The Ear Model

 2.1 - Philosophy

The cochlear model to be described here was first sketched by Richard 
Lyon [Lyon82 and Lyon85] based on work described elsewhere 
[Schroeder73 and Zweig76].  These papers should be consulted for more 
information about the theory of the cochlea on which this model is based.  
The purpose of this notebook is to describe a number of the details that 
have not been previously published.  The information in this report should 
be sufficient to allow the reader to implement their own version of this 
cochlear model.

This model describes the propagation of sound in the inner ear and the 
conversion of the acoustical energy into neural representations.  We do 
not describe the effect on the sound as it enters the ear and travels down 
the ear canal.  This is commonly thought to consist of a simple linear 
filter of the sound and thus to be relatively unimportant for speech 
recognition.  The middle ear couples the energy that is traveling in the 
ear canal through the ear drum and a series of bones into the fluid filled 
chambers of the cochlea.  The middle ear is also thought to provide some 
automatic gain control (AGC) via the stapedial reflex, but we have chosen 
not to model this mechanism [Pickels82, p21].

This model does not try to literally describe each structure in the 
cochlea but instead models the cochlea as a "black box."  Sound entering 
the cochlea via the oval window is converted into nerve firings that then 
travel up the auditory nerve into the brain.  The output of this model is a 
vector proportional to the firing rate of neurons at each point in the 
cochlea.  

While many of the structures in this model (such as half-wave 
rectification or automatic gain control) are present in the cochlea, we 
have implemented our model differently to make the computations easier.  
Hopefully the results or our model are similar to the real cochlea.  A 
more accurate description of the cochlea would model the propagation of 
pressure waves in two dimensional or three dimensional ducts, replace 
the AGC described later in this report with structures similar to the 
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outer hair cells and finally would assume a continuous-time analog 
implementation.  This type of model is described in other works [Lyon88a 
and Lyon88b].

 2.2 - Overview

The cochlear model described by Lyon [Lyon82] combines a series of 
filters that model the traveling pressure waves with Half Wave 
Rectifiers (HWR) to detect the energy in the signal and several stages of 
Automatic Gain Control (AGC).  This structure is shown in the figure 
below.

Outer Ear

Middle Ear  Filter  Filter  Filter

   AGC    AGCAGC

HWR HWR HWR...

Filtering

Detection

Compression

Preemphasis

Sound that enters the outer and the middle ear is passed through the oval 
window into the cochlea.  Once in the cochlear duct the the pressure 
wave propagates down the basilar membrane.  The stiffness of the 
basilar membrane varies smoothly over its length and at any one point 
will resonate most strongly with a pressure wave of a particular 
frequency.  At each stage of the cochlea some of this motion is sensed by 
the hair cells.  It is these cells that convert the mechanical signals 
which in turn cause stimulation of the neurons which commicate with 
higher levels in the brain.

An important characteristic of the cochlea is that energy in the 
acoustitic wave is separated by frequency and each point in the cochlea 
will respond best to one frequency.  In a sense the cochlea maps the 
frequency content of the signal into the spatial domain.  The cochlea near 
its base (where the sound enters) is most sensitive to high frequency 
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sounds and as the wave travels down the cochlea lower and lower 
frequencies are sensed.

This notebook describes the filters and the AGC's shown in the picture 
above.  The outputs of the AGC stage are positive signals that indicate 
the firing rate of the neurons leading to the brain.  This notebook will 
first describe the characteristics of a filter stage.  A number of 
Mathematica structures used to design digital filters are described in an 
Appendix.  We will then describe the construction of each stage.  Finally 
we will conclude with a discussion of the AGC used in this model.

Two versions of the filtering stage are described here.  In the original 
formulation each filter stage was implemented as two separate filters.  
The sound passes through a cascade of filters to model the propagation 
down the cochlea and a parallel set of filters model the basilar 
membrane motion.  For this reason the original model is known as the 
cascade-parallel formulation. Later it was discovered that the poles and 
zeros of the original two filters per stage could be rearranged and each 
stage implemented as a single second order filter.  This is called the 
cascade-only filter bank.

 2.3 - The Cascade-Parallel Model

The cochlea is best modeled using a continuous differential equation.  
This is very difficult to implement on a digital computer so instead we 
split the cochlea into a large number of discrete sections.  We can then 
model each section with a simple linear transfer function.  For small 
enough sections the errors involved will be negligible and our digital 
implementation will be accurate.  In this implementation of the model 
we have used approximately 80 stages.

The cochlea model described by Lyon [Lyon82] combines a series of notch 
filters that model the traveling pressure waves with resonators to model 
the conversion of pressure waves into basilar membrane motion or 
velocity.  The combination of notch filters and resonators used to model 
the cochlea are shown below.
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At each point in the cochlea the acoustic wave is filtered by a notch 
filter.  Each notch filter operates at successfully lower frequencies so 
the net effect is to gradually low pass filter the acoustic energy.  An 
additional resonator (or bandpass filter) picks out a small range of the 
traveling energy and models the conversion into basilar membrane 
motion.  It is this motion of the basilar membrane that is detected by the 
inner hair cells.  In the work to follow a combination of a notch and a 
resonator is called a stage.

The filters used in this model have pole-zero plots as shown below.  
Sound travels down the line of notch filters, at each stage getting 
filtered at lower and lower frequencies.  At each stage a resonator (or 
bandpass filter) senses the output.  The following plots show the 
locations of the poles and zeros in the s-plane for several of the notch 
and resonator filters.
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The frequency domain responses of the 1, 4, 10, 30, 60 and 75'th stages 
are shown below.  The curves with their peaks at the right represent the 
response of the low numbered stages while later stages respond best to 
low frequencies.  These curves include the effects of a simple model of 
the outer and middle ears.
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  f
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-100.
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25.

Response in dB
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 2.4 - Parameters of Cascade-Parallel Model

We will first describe the parameters of the original (cascade - parallel) 
cochlea model.  To make the description simpler we will assume there is 
no sampling and express the filters in the Laplace domain.  The bandwidth 
of each ear filter is a function of its center frequency.  At high 
frequencies the bandwidth is approximately equal to the center frequency 
divided by a constant (EarQ ).  At lower frequncies the bandwidth 
approaches a constant given by EarBreakFreq/EarQ .

EarBandwidth[cf_] := Sqrt[cf^2 + EarBreakFreq^2]/EarQ

where

EarBreakFreq = 1000.0;

EarQ = 8;

Limit[EarBandwidth[f],f->0]

125.

The bandwidth of the ear filter as a function of its center frequency 
looks like this:

2000 4000 6000 8000
   Hz

Bandwidth of each Channel

200

400

600

800

1000

Hz

Successive ear filter stages are overlapped by a fraction of their 
bandwidth.  This parameter is arbitrary but smaller numbers lead to more 
computations.  We currently overlap 4 stages within the bandpass region 
of any one filter.

EarStepFactor = .25;

LyonsCochlea.mma 11



We model each section of the cochlea with a second order section.  We 
use a pole at the center frequency to give a slight peak to the filter's 
response at its center frequency.  A zero is placed in the response 
slightly above the center frequency to provide the band rejection. 

The center frequency and quality factor (q) of the zeros are given by:

OriginalZeroCF[cf_] := cf + 
EarBandwidth[cf]*EarStepFactor*

OriginalEarZeroOffset

OriginalEarZeroOffset = 0.5;

Note, that OriginalEarZeroOffset  is a factor that determines how far 
the zero is offset from the center frequency of the filter stage.  The 
offset is a function of the center frequency change (EarBandwidth[cf] 
* EarStepFactor ) and models the fact that the response of the filter is 
slightly lower above the notch than it is below.

OriginalZeroQ[cf_] := OriginalEarSharpness*
OriginalZeroCF[cf]/
EarBandwidth[cf]

OriginalEarSharpness = 5.0;

OriginalEarSharpness  is a parameter that in effect sets how much 
sharper the notch (zero) is than the resonator (pole.)

2000 4000 6000 8000
 Hz

Notch (Zero) Q vs. Center Frequency

20

25

30

35

40

The poles (resonators) in the response are centered at the center 
frequency of each stage but have a lower bandwidth or q .

OriginalPoleCF[cf_] := cf
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OriginalPoleQ[cf_] := cf / EarBandwidth[cf]

2000 4000 6000 8000
 Hz

Resonator (Pole) Q vs. Center Frequency
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Each section or stage of the discrete cochlea is numbered starting at the 
base.  Those stages that are closest to the base (low indices) are 
sensitive to the highest frequencies and stages with higher indices 
respond to lower frequencies.   The center frequency of each discrete ear 
filter is defined by the following recursive relationship:  [Note, Block  is 
a Mathematica function that allocates storage for a list of variables, 
just cf  in this case, and then executes the statements that follow.]

OriginalEarChannelCF[index_] :=
OriginalEarChannelCF[index] = 
If [ index <= 0, 

8000,
Block[{cf},

cf = OriginalEarChannelCF[index-1];
cf - EarStepFactor EarBandwidth[cf]]]

Starting at an arbitrary high frequency (8000 Hz for index = 0 ) we step 
down in frequency by EarStepFactor  times the bandwidth of the filter 
at the previous frequency.  
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 2.5 - Cascade-Parallel Filter Design

We can now design the actual filters used in the original ear model.  Each 
notch filter is a combination of a pair of poles (with low q ) and a pair of 
zeros (with a higher q  and higher center frequency.)  To simplify the 
explanation we will illustrate the model by showing the continuous time 
filters.  [Note the function ContinuousSecondOrderFil ter  and other 
basic filter design functions are defined in the Appendix to this report.]  

OriginalNotch[index_] :=
Block[{cf,zerof,polef},

cf = OriginalEarChannelCF[index];
zerof = ContinuousSecondOrderFilter[

OriginalZeroCF[cf],
OriginalZeroQ[cf]];

polef = ContinuousSecondOrderFilter[
OriginalPoleCF[cf],
OriginalPoleQ[cf]];

N[ContinuousAdjustGain[zerof/polef,0]]]

For example this is the response to the 10'th notch filter.
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onp = ContinuousFreqResponse[OriginalNotch[10],10000];
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 Hz

Response

-8

-6

-4

-2

dB

A resonator converts pressure in the cochlea into basilar membrane 
motion.  We represent the resonator as a combination of a zero at DC 
(implemented as a differentiator) and a pair of poles.  The poles (or 
bandpass filter) are slightly below the center frequency of the stage so 
that they emphasize the frequencies near the cutoff frequency.  To make 
the computations easier the poles of this stage are actually placed at the 
same location as the poles in the resonator of the following stage.  The 
reasons for this will be described in the next section.  In the latest 
model we combine the poles in adjacent stages to reduce the 
computational effort.

OriginalResonator[index_] :=
Block[{cfplus1,zerof,polef},

cfplus1 = OriginalEarChannelCF[index+1];
zerof = s;
polef = ContinuousSecondOrderFilter[

OriginalPoleCF[cfplus1],
OriginalPoleQ[cfplus1]];

N[ContinuousAdjustGain[zerof/polef,cfplus1]]]

This is the response of the 10'th resonator.   The sharp cutoff at DC is 
caused by the differentiator.
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orp = ContinuousFreqResponse[OriginalResonator[10],
10000];
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We can overlay these two last plots to show that the resonator peaks at 
the lower edge of the notch filter.

Show[onp,orp];
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Finally the response of the combined notch and the resonance filters is 
shown below (for the 10'th filter stage.)
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ContinuousFreqResponse[OriginalResonator[10] *
OriginalNotch[10], 10000];
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 2.6 - The Cascade-Only Model

The latest version of the ear model combines the notch and resonator 
filters of each stage into a single filter.  This gives a cascade-only 
representation of the ear model instead of the cascade-parallel version 
described above.  Rearranging the filters does not change the the net 
result of the filtering; its only effect is to reduce the computational 
effort needed to model the cochlea.

The pole-zero plots of the original model are shown again below.   We 
have circled the poles and zeros that are combined to form each stage of 
the cascade-only filter bank.  First note that every resonator includes a 
zero at DC.  Since all the filters shown here are linear we can move the 
differentiator into an initial preemphasis stage. 
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A more important optimization is possible if the poles in each notch 
filter are combined with the poles in the previous resonator filter.  This 
optimization is shown above.  The zeros from each notch filter and the 
poles from a resonator and the next notch filter are rearranged into a 
single filter.  This is possible because the locations of the poles in the 
resonator filters were chosen to be at the same location as the poles in 
the succeeding notch filter. 

The new cascade-only ear filter has an initial stage that combines the 
effects of the outer and middle ears,  the differentiator (zero at DC) that 
was originally part of the resonator and a pair of poles from what was 
the first stage.  Each succeeding stage is a pair of poles and a pair of 
zeros and the output of each stage is input to not only the next stage in 
the cascade but also the detection blocks (HWR).

The cascade-only filter structure has slightly different parameters.  We 
repeat the following equations with several small changes.  Like before 
the center frequency of each stage is described by the location of the 
poles.  This means the center frequency of the associated zero is an extra 
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channel higher than the pole frequency therefore EarZeroOffset  changes 
from 0.5 to 1.5.

CascadeZeroCF[cf_] := cf + 
EarBandwidth[cf]*EarStepFactor*

EarZeroOffset

EarZeroOffset = 1.5;

CascadeZeroQ[cf_] := EarSharpness*CascadeZeroCF[cf]/
EarBandwidth[cf]

EarSharpness = 5.0;

CascadePoleCF[cf_] := cf

CascadePoleQ[cf_] := cf / EarBandwidth[cf]

We define a new version of EarChannelCF  that is based on a sampled 
version of the ear model.   Now the maximum channel frequency is a 
function of the Nyquist rate (fs /2)  and the location of the zeros in the 
first stage of filtering.  

MaximumEarCF[fs_] :=
Block[{topf},

topf = fs / 2.0;
topf - (CascadeZeroCF[topf]-topf) +

EarBandwidth[topf] EarStepFactor]

Starting at the MaximumEarCF  (index = 0 ) the center frequency of 
each channel decreases by EarStepFactor  of the bandwidth at the 
previous stage.   [Note that since the EarChannelCF  function is used 
everywhere in the ear model we have used a Mathematica  technique 
known as dynamic programming (or caching) to remember previously 
calculated values in an array.  Later, if we want to find the center 
frequency of an already computed filter section, we only need to look in 
the array.]

EarChannelCF[index_, fs_] :=
EarChannelCF[index,fs] = 

If [ index <= 0, 
 MaximumEarCF[fs],

Block[{cf},
cf = EarChannelCF[index-1, fs];
cf - EarStepFactor EarBandwidth[cf]]]
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Note that this expression is a function of the sampling frequency (fs ).  
To prevent aliasing it is important that the zero in the first stage be 
below the Nyquist rate.

CascadeZeroCF[EarChannelCF[1,16000]]

7986.52

The center frequency of each stage in the cascade-only filter bank is 
shown below.
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Test Code

The following is some test code to show that the Mathematica 
definitions above are working correctly.

samplingfrequency=16000

16000

cf=EarChannelCF[1,samplingfrequency]

7625.99

EarBandwidth[cf]

961.409

CascadeZeroCF[cf]

7986.52

CascadeZeroQ[cf]

41.5355

LyonsCochlea.mma 20



CascadePoleCF[cf]

7625.99

CascadePoleQ[cf]

7.93209
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 3 - The Cochlea Filter Bank

This section describes the cascade of filters that define the ear model.  
As described above there is an initial preemphasis stage followed by the 
cascade of ear filter stages.  This section will define the preemphasis 
stage, each of the cochlea stages and then show their combined frequency 
response.  In the remainder of this report we will describe the filters in 
the z-domain.  Again, see the Appendix of this report for the definitions 
of the filter design functions used here.

 3.1 - Preemphasis Stage

Our model of the ear uses a simple preemphasis filter to roughly model 
the effects of the outer and middle ear.  This is followed by a 
differentiator and a high frequency compensator that are common to all 
of the stages.  Finally, there is a string of second order filters to model 
each section of the cochlea.

The outer and middle ear add a slight high pass response to the system.   
This initial high pass filter also helps to normalize (or whiten) the input 
to the inner ear and makes it easier to display the resulting output.   The 
outer and middle ears are modelled here with a high pass filter with a 
corner frequency of 300 Hz.

EarPremphCorner = 300.0;

OuterMiddleEarFilter[fs_] := 
MakeFilter[FirstOrderFromCorner[EarPremphCorner,fs],

MakePoly[{1}], 
fs, 0, 1.0]

OuterMiddleEarFilter[16000]//N

8.99808 (1. - 0.888865 z)
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FreqResponse[OuterMiddleEarFilter[16000],16000];
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Each stage of the cascade-parallel filter bank described in [Lyon82] uses 
a differentiator to convert pressure waves into basilar membrane 
motion.  Each differentiator is adjusted so that at the center frequency 
of the stage the differentiator has unity gain.  In this model we have 
"factored" this differentiator out of each stage and it appears just once 
before the ear cascade (a term of the form 1-z).  Later when we define 
the stages of the cascade we will adjust the gain of each stage so that 
the differeniator has unity gain at its center frequency.   In addition we 
combine the differentiator with a zero at the Nyquist rate (1+z) to 
compensate for the close spacing of the poles near z=-1 for high 
frequencies.   This combined filter looks like:

Compensator[fs_] := MakeFilter[MakePoly[{1,0,-1}],
MakePoly[{1}],
fs,
fs/4,
1.0]

Compensator[16000]

          2
0.5 (1 - z )

In the frequency domain the response looks like:
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FreqResponse[Compensator[16000],16000];
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Combining the outer/middle ear filter and the compensator the total 
response is:

FreqResponse[Compensator[16000] 
OuterMiddleEarFilter[16000], 16000];
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Finally  we can combine these initial stages with the first two poles of 
the ear filters.  The first stage of the cascade is a combination of the 
outer/middle ear filter, the compensator and a pole pair.
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EarFrontFilter[fs_] :=
(OuterMiddleEarFilter[fs]
 Compensator[fs]
 MakeFilter[MakePoly[{1}],

SecondOrderFromCenterQ[
CascadePoleCF[MaximumEarCF[fs]],
CascadePoleQ[MaximumEarCF[fs]],
fs],

fs,
fs/4,
1.0])

The combined initial filters and first two poles of the ear filter have the 
response shown below.

EarFrontFilter[16000]//N

                                                   2
(-1.45178 + 7.39389 I) (1. - 0.888865 z) (1. - 1. z )
--------------------------------------------------------------------------------------------------------- 
                                      2
              0.677314 + 1.64344 z + z

FreqResponse[EarFrontFilter[16000],16000];
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 3.2 - The Stage Filters

D e f i n i t i o n s

The stages of the filter bank that simulate each section of the cochlea 
are each a combination of two poles and two zeros.   Recall that a pair of 
poles with a broad response is combined with a pair of zeros at a slightly 
higher frequency.
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EarStageFilter[cf_, fs_, dcgain_] :=
MakeFilter[

SecondOrderFromCenterQ[CascadeZeroCF[cf],
CascadeZeroQ[cf],
fs],

SecondOrderFromCenterQ[CascadePoleCF[cf],
CascadePoleQ[cf],
fs],

fs,
0.0,
dcgain]

This filter has the following response (shown here for the filter section 
centered at 5000Hz.)  Note that there is a slight peak in the response 
before the notch due to the poles.
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Response in dB

We set the gain of each stage in the ear filter to compensate for the gain 
provided by the differentiator in the preemphasis stage.  The gain of an 
ideal differentiator is proportional to frequency.  Preceeding all channels 
of the ear filter with a single differentiator will cause the lower 
frequency channels (high index) to have a much lower output then the 
preceeding stages.  While within a single channel we still want to add a 
term that is proportional to frequency we want to adjust the 
differentiator at each stage so it has unity gain at the center frequency.

To compensate for the single differentiator we adjust the gain of each 
stage of the cascade filter by dividing its response by its center 
frequency (cf ).  But since all of the filter stages are in series we must 
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also remove the effect of the gain from the previous section.  Thus the 
gain at each stage is given by:

EarFilterGain[i_,fs_] := EarChannelCF[i-1,fs]/
EarChannelCF[i,fs]

When the differentiator is combined with each stage of the ear filter (by 
multiplying their responses) the net effect of this gain term is to 
normalize the differentiator so that it has unity gain.  The gain at each 
stage is shown below.

20 40 60 80
   Channel #

1.04

1.06

1.08

1.12

Gain (dB)

To produce the final filter function we combine the response for 
EarFrontFilter (section 0) with those defined by the EarStageFi l ter  
function.  

Again we use what Mathematica  refers to as dynamic programming 
(caching) to save the resulting filters.  It is important to remember that 
this function implicitly depends on the values of a number of constants 
(for example EarSharpness  and EarQ ) and if any of these parameters 
are changed then the Mathematica  function Clear[EarFilter]  must be 
used to invalidate the cache.

Clear[EarFilter]
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EarFilter[i_,fs_] :=
EarFilter[i,fs] = 
If [ i == 0,

N[EarFrontFilter[fs]],
Block[{cf, stagegain},

cf = EarChannelCF[i,fs];
stagegain = EarFilterGain[i,fs];
If [ CascadePoleQ[cf] < 0.5 ,

0,
N[EarStageFilter[cf,fs,stagegain]]]]]

The filter calculated using the function SecondOrderFromCenterQ  will 
have real roots when the value of q  is less than 0.5.  We arbitrarily stop 
the cascade structure when this happens.  Solving the equation 
CascadePoleQ[f] == .5  we find this is true for all stages with a center 
frequency less than 63hz.

Solve[CascadePoleQ[f] == .5,f]

{{f -> 62.6224}}

EarChannelCF[85,16000]

71.9869

EarChannelCF[86,16000]

40.656

Test Cases

These test cases are used to verify the consistency between this 
Mathematica  model and the C and Lisp versions.

EpsilonFromTauFS[5/cf,fs]

 -1525.2/fs
E

FirstOrderFromTau[5/cf,fs]//N

      -1.
---------------- + z---------------     
       1525.2/fs
2.71828
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FirstOrderFromCorner[cf/4,fs]//N

           1. z
1. - -----------------     ---------------- 
            11978.9/fs
     2.71828

SecondOrderFromCenterQ[cf/4,2,fs]//N

                                   11598.5
                          2. z Cos[-------]                                   ------  
       -5989.44/fs    2              fs
2.71828            + z  - -----------------                          ---------------- 
                                 2994.72/fs
                          2.71828

EarPreCoeffs[16000]//N

EarPreCoeffs[16000.]

EarFrontCoeffs[16000]//N

EarFrontCoeffs[16000.]

EarCascadeCoeffs[cf,16000,1.032525595]//N

EarCascadeCoeffs[7625.99, 16000., 1.03253]

G r a p h i c s

Using the following functions we can plot the poles and zeros of all of 
these filters.

PlotPoles[fs_] :=
ListPlot[Map[{Re[#],Im[#]}&,

Flatten[Table[RationalPoles[
EarFilter[i,16000]],

{i,0,85}]]],
PlotRange->{{-1,1},{-1,1}},
AspectRatio->1,
PlotLabel->"Poles of Ear Filter (z domain)"]
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PlotPoles[16000];
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This plot shows the poles of the filter bank going from high frequencies 
(near the base of the cochlea) around the unit circle to those of the low 
frequencies.    Recall in the z-domain that frequency is mapped into a 
position on the unit circle.  DC is at 1 on the real axis, the Nyquist 
frequency is at -1 and all other frequencies are on the unit circle 
between these two points.  In addition the distance the pole (or zero) is 
from the unit circle is proportional to the quality factor of the filter.  
The poles in the cochlear filter have a lower q and thus are farther from 
the unit circle then the zeros shown below.

PlotZeros[fs_] :=
ListPlot[Map[{Re[#],Im[#]}&,

Flatten[Table[RationalZeros[
EarFilter[i,16000]],

{i,0,85}]]],
PlotRange->{{-1,1},{-1,1}},
AspectRatio->1,
PlotLabel->"Zeros of Ear Filter (z domain)"]
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PlotZeros[16000];
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In the s-plane the poles look like (using the substitution z = exp[sT] ) :

PlotSPoles[fs_,smax_] :=
ListPlot[Map[{Re[#],Im[#]}&,

Log[Flatten[Table[RationalPoles[EarFilter[i,16000 ]
{i,0,85}]]]] fs,

PlotLabel->"Poles of Ear Filter (s Plane)",
PlotRange->{{-smax,smax},{-smax,smax}},
AspectRatio->1,
Axes->{0,0}]
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PlotSPoles[16000,5000];
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 3.3 - The Cascade Filters

We can now define a cascade response.  At each position in the cochlea 
the response is the product of the response of this section and all 
preceeding sections.  In Mathematica  this is written:

Clear[CascadeFilter]

CascadeFilter[index_, fs_] :=
CascadeFilter[index, fs] = 

Product[EarFilter[i,fs], 
{i, 0, index}]

Since each term in this product is a second order function the cascade 
filter quickly becomes very high order.  It is tempting to wrap 
ExpandNumerator  and ExpandDenominator  functions around the 
Product  in this defintion but the numerical errors involved become 
large.   For low index numbers we can display the results which look like:
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CascadeFilter[1,16000]

                                                    2
((-1.29244 + 6.58239 I) (1. - 0.888865 z) (1. - 1. z ) 
 
                             2
    (0.927271 + 1.92587 z + z )) / 
 
                            2
  ((0.685543 + 1.63665 z + z ) 
 
                             2
    (0.677314 + 1.64344 z + z ))

The frequency responses at a number of different places in the cochlea 
are shown below.  In each case the maximum of the response is near the 
center frequency of the last stage of the filter.

FreqResponse[CascadeFilter[1,16000],16000];
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Response in dB

FreqResponse[CascadeFilter[4,16000],16000];

2000 4000 6000 8000
  f
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Response in dB
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FreqResponse[CascadeFilter[10,16000],16000];
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Note the response curves for later stages (higher indices) take a long 
time to compute.  The 30'th stage, for example, is actually the product of 
31 second order sections or a 62nd order filter.

FreqResponse[CascadeFilter[30,16000],16000];

2000 4000 6000 8000
  f

-100

-80

-60

-40

-20

20

40

Response in dB
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FreqResponse[CascadeFilter[60,16000],16000];
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FreqResponse[CascadeFilter[75,16000],16000];
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We can evaluate the response of the fifth cascaded stage on the z-plane 
using the expression below.  Note that the first five stages includes the 
first 10 poles plus 10 zeros with a higher q.  The zeros lead to the sharp 
dropoff.
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Plot3D[Abs[FilterEval[CascadeFilter[5,16000],
x + I y]],

{x,-1,1}, {y,-1,1},
PlotPoints->64,
Lighting->True];
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The next plot shows the total response for all 85 stages of the ear filter.  
The zeros with their high q lead to a low response outside the unit circle.  
This plot does not have enough resolution to show each of the poles.  Thus 
the four spikes are places where Mathematica happened to sample 
especially close to a pole.  The response is generally higher near DC 
because the end of the cochlea is especially sensitive to low frequencies.
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Plot3D[Abs[FilterEval[CascadeFilter[85,16000],
x + I y]],

{x,-1,1}, {y,-1,1},
PlotPoints->64,
Lighting->True];
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DensityPlot[Abs[FilterEval[CascadeFilter[85,16000],
x + I y]],

{x,-1,1}, {y,-1,1},
PlotPoints->64];
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 4 - The Automatic Gain Control (AGC)

 4.1 - The Simple AGC

The output of each filter stage is a bandpass representation of the 
original audio signal.  Each of these bandpass signals is passed through a 
half-wave rectifier and then through four stages of AGC.  The half-wave 
rectifier models the detection nonlinearity of the hair cells, providing a 
non-negative output that can be used to represent neural response.  The 
AGC stages described below depend on their inputs being rectified.

Each stage uses a different time constant to simulate the different 
adaptation times in the ear.  The cochlear model as currently 
implemented uses four stages of AGC.  Each AGC in turn reduces the level 
of the channel, but with shorter time constants.  The target  values and 
time constants that are currently used are:
First   AGC:        .0032            640ms
Second AGC:             .0016            160ms
Third AGC:                .0008            40ms
Fourth AGC:              .0004             10ms
The significance of these figures will be explained shortly.

The half-wave rectification provides a crude energy measure in the 
signal.  Each AGC stage is implemented as a variable gain which tries to 
keep the output of the AGC stage from exceeding a fixed level.  In general 
the gain will be between zero and one.  To model the masking effects of 
the ear, each stage of the AGC combines the bandpass outputs from the 
current channel plus its nearest neighbors.   Since all channels are 
coupled one channel can affect all channels in the filter bank although 
the effect will decay exponentially with distance.  

The resulting AGC is shown below.  The letter e in the drawing is the 
same as the epsilon  variable in the equations to follow.  Likewise the 
letter t  is substituted for ta rget .
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e/t
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To right and 
left channels

X

X

The purpose of the AGC is to attenuate the incoming signal so that on 
average it remains below the target  value.  The loop with a feedback 
gain of (1-epsilon)/3  (the state  equation below) represents a simple 
low pass filter with a time constant related to the epsi lon  parameter.  
A longer time constant means that the AGC takes longer to respond to the 
input.  The division by 3 in this expression in effect takes the average of 
the left, right and current channels.  The targe t parameter is used to 
scale the input to the loop filter, y .  In the long run the state  equation 
will track the value of the output of the AGC divided by the value of 
target .  

Assuming the left, middle and right inputs are equal, the following 
equations define the response of the AGC.  

Gain[i_] := 1 - State[i-1]

State[i_,y_,epsilon_,target_] := 
State[i,y,epsilon,target] = 

epsilon*y/target + 3*State[i-1]*((1-epsilon)/3)
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In the long term the output of the state  loop (for constant input y  in all 
channels) will be equal to the output value divided by the target .  This is 
found using Mathematica by solving the following equation.

Solve[state == epsilon y/target + state(1 - epsilon), 
state]

             y
{{state -> ------}}           -----   
           target

The output of the AGC is found by replacing the state  in the gain 
equation above with the steady state solution.  Thus the steady state 
output of the AGC is

Solve[y == x ( 1 - y / target),y]

        target x
{{y -> ----------}}       ---------   
       target + x

If the target  is equal to one then the following curve shows the output 
of the AGC versus input values.   Note the limit of this function for large 
input values is equal to target (one in this case.)

AGCFun[x_,target_] = N[target x / (target + x)];

Plot[AGCFun[x,1],{x,0,4}];

1 2 3 4

0.2

0.4

0.6

0.8

Limit[AGCFun[x,target],x->Infinity]

target

The output of the AGC scales.  With a target  of .1 the following transfer 
function is measured.
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Plot[AGCFun[x,.1],{x,0,1}];
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Plotting the resoponse on a logarithmic axis we see the output of the 
AGC approach the target value (.0004 this time.)

Plot[AGCFun[10^x,.0004],{x,-6,0},
AxesLabel->{"Log(10) of Input","AGC Output"}];
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Using actual targets described above for four cascaded stages, here is 
the overall response (again on a logarithmic scale):
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Plot[AGCFun[AGCFun[AGCFun[AGCFun[10^x,.0032],
  .0016],

.0008],
.0004],

{x,-6,0},
AxesLabel->{"Log(10) of Input","AGC Output"}];
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The impulse response of the AGC is uninteresting not only because the 
AGC is a nonlinear filter but also because all impulses are passed 
through unchanged.  This is because the gain reduction occurs after the 
impulse has ended.  Instead we will demonstrate the behaviour of the 
AGC using step inputs.  The following function simulates the AGC 
response for step inputs of arbitrary height (input ).  The result of this 
function is a list of output values for the AGC at each step in time.

AGCResponse[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = N[(1-state)*input];

state = response[[i]]*eps + state*eps1,
{i,1,count+1}];

response];

This leads to the following behavior for small inputs (we will use a 
target  value of 1 and an epsi lon  of .2 for most illustrations .)
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PlotResponse[responselist_] :=
ListPlot[responselist,

PlotRange->{{0,Length[responselist]},
{-1,1+Max[responselist]}},

Axes->{0,0},
PlotJoined->True];

For a step input  of height .5, a target  value of 1 and an epsilon  of .2 
the following plot shows the first 15 outputs of this AGC.

PlotResponse[AGCResponse[.5,1,.2,15]];
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For an input that is 10 times larger the response is shown below.

PlotResponse[AGCResponse[5,1,.2,15]];
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One problem with this AGC is that it initially overcorrects by reducing 
the gain too much.  For large enough inputs the gain can go negative, 
leading to highly oscillatory behaviour.
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PlotResponse[AGCResponse[8,1,.2,15]];
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For even larger outputs this AGC is unstable.

PlotResponse[AGCResponse[10,1,.2,15]];
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 4.2 - AGC Improvements

We will consider three different approaches to keep the AGC stable.  
First, if the variable gain is followed by a half wave rectification then 
this will prevent the state  loop and the AGC stages that follow from 
ever seeing a negative input.  This is described by:

Hwr[x_] := If [ x < 0, 0, x]
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AGCResponse1[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = Hwr[(1-state)*input];

state = response[[i]]*eps + state*eps1,
{i,1,count+1}];

response]

Note that this AGC does not blow up like AGCResponse  above but its 
output is not very well behaved.  For large enough inputs (and short 
enough time constants) the output will eventually oscillate between zero 
and a large number with a value between the input and the target.

PlotResponse[AGCResponse1[8,1,.2,20]];
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PlotResponse[AGCResponse1[9,1,.2,20]];
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PlotResponse[AGCResponse1[10,1,.2,20]];
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A second approach is to limit the value of the state  variable to be less 
than one.  This keeps the gain from ever going negative.

LimitValue[x_,value_] := If [ x < value, x, value]

AGCResponse2[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = (1-state)*input;

state = LimitValue[response[[i]]*eps + 
state*eps1,

1.0],
{i,1,count+1}];

response]

Again the response does not blow up, but it is still oscillatory.
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PlotResponse[AGCResponse2[10,1,.2,20]];
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Finally,  a third approach is to use a soft limiter so that the gain 
approaches but never quite reaches zero.  In this case we have replaced 
the state  variable in the gain equation with state/(1+state) . This 
function slowly approaches one as the state  variable gets large and thus 
prevents the AGC from shutting off completely.

AGCResponse3[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = (1-state/(1+state))*input;

state = response[[i]]*eps + state*eps1,
{i,1,count+1}];

response]

The response to this AGC is now more desireable, even for very large 
inputs, though the output is no longer kept below target for large inputs.
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PlotResponse[AGCResponse3[400,1,.2,20]];
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 5 - Conclusions

This report has described the implementation of one of Richard Lyon's 
models of the cochlea (or inner ear.)  While we hope this model 
accurately dscribes the total mechanical effects of the cochlea it makes 
no attempt to accurately model each individual component.  However, we 
do not think this distinction is important when building speech 
recognizers.  Seperate models of the hair cells and the neurons will be 
published later.

I wish to acknowledge the help of Richard Lyon, Steve Milne, Robert Hon 
(all at Apple) and Steve Skienna (now at the State University of New 
York, Stony Brook) for their help with this notebook.  This model was 
first defined and implemented while Richard Lyon was a member of the 
Schlumberger Palo Alto Research Laboratory.

 6 - Usage
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 Appendix - Filter Design
This appendix defines several Mathematica functions for signal 
processing applications.  Mostly we concentrate on first and second order 
filters since the cochlear model is defined this way.  In the first section 
we will describe continuous time filters and then we will describe the 
discrete time versions of these filters.   In general the functions 
provided in the continuous case and in the discrete case are similar.  To 
avoid confusion we use the word "Continuous" in the names of the 
continuous domain filters.

 A.1 - Continuous Time Filter Design

 A.1.1 - Roots of the filters

Continuous time filters are described by giving the filter's response as a 
function of complex frequency s .  The following functions are used to 
evaluate the complex response of a filter for a real frequency (in cycles 
per second), its magnitude, phase and the response in decibels.  A filter's 
response function is evaluated along the imaginary axis by making the 
substitution s->I 2 Pi f  (or j 2 Pi f  in conventional EE notation.)  In 
the expressions that immediately follow filter  can be an arbitrary 
function of the complex frequency s.

ContinuousFilterEval[filter_, f_] :=
filter /. s->f;

ContinuousFilterGain[filter_,f_] := 
ContinuousFilterEval[filter,I 2 Pi f];

ContinuousFilterMag[filter_,f_] := 
Abs[ContinuousFilterGain[filter,f]]

ContinuousFilterPhase[filter_,f_] := 
Arg[ContinuousFilterGain[filter,f]]

dB[x_] := 20 Log[10,x]

ContinuousFilterDb[filter_,f_] := 
dB[ContinuousFilterMag[filter,f]]

LyonsCochlea.mma 52



Finally, we use the following function to display the frequency response 
of a continuous filter.  (We start the plot at 1Hz to avoid any problems 
with filters that have a zero at DC.)

ContinuousFreqResponse[filter_, maxf_] :=
Block[{response},

response = N[ContinuousFilterDb[filter,f]];
Plot[response,{f,1,maxf},
AxesLabel->{" Hz", "dB"},
PlotLabel->"Response"]];

The ContinuousAdjustGain  function is used to modify a filter so that 
it has unity gain at any desired frequency.

ContinuousAdjustGain[filter_,f_] := 
filter/ContinuousFilterGain[filter,f]

A second order filter is described by its resonant frequency (f ) and its 
quality factor (q ).  The 3dB bandwidth of the resulting filter is 
approximately equal to f/q . The following function computes the roots of 
a second  order polynomial with a given center frequency (f  in cycles per 
second) and bandwidth (q ).  These roots will be used later in the 
numerator of a filter function to make a notch in the frequency response 
or in the denominator to make a peak.

ContinuousSecondOrderRoot[f_,q_] := -2 Pi f/q/2 + 
I 2 Pi f Sqrt[1-1/(2q)^2]

For any given frequency these roots trace out a circle in the s -plane.  For 
very large q  the roots are close to the imaginary axis.  Thus as the 
frequency response is measured along the imaginary axis the roots 
closest to the imaginary axis (high q ) will have a sharper response than 
those that are farther away (low q ) .

The plot below shows the location of one of the two roots of a second 
order filter with a constant resonant frequency.  Those roots that are 
closest to the imaginary axis have a high q (2.2 in this case) while those 
on the left near the real axis have a low q (.501) and thus a broad 
response in the frequency domain.  

The radius of this circle is 2 Pi times the resonant frequency (1000Hz).  
As the resonance frequency is increased this plot will trace out a circle 
with a larger radius.  In all cases a filter with real coefficients will 
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have a second set of roots that are complex conjugates of the ones shown 
below.  Also for the filter to be stable all of the roots must be in the left 
half of the complex plane.

-6000 -5000 -4000 -3000 -2000 -1000 0

Location of Roots vs. Q (Complex S-Plane)

1000

2000

3000

4000

5000

6000

We can create a second order filter using a pair of complex conjugate 
roots as a function of the complex frequency s .

ContinuousSecondOrderFilter[f_,q_] := 
Expand[(s-ContinuousSecondOrderRoot[f,q])

(s-Conjugate[ContinuousSecondOrderRoot[f,q]])]//N

The maximum response of this filter is not at its "center" frequency but 
at a slightly lower frequency given by.

ContinuousNaturalResonance[f_,q_] := 
f Sqrt[1 - 1/(2q^2)]

The approximate location of the 3dB points of the response curve are 
defined by the following two equations.

Lower3DbPoint[f_,q_] := 
ContinuousNaturalResonance[f,q] - f/(2q)

Upper3DbPoint[f_,q_] := 
ContinuousNaturalResonance[f,q] + f/(2q)
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 A.1.2 - Test Code

The following two equations verify that the two 3dB frequencies really 
do solve the definining equations (See Hayt and Kemmerly,  "Engineering 
Circuit Analysis".)

Simplify[q(Upper3DbPoint[f,q]/f-f/Upper3DbPoint[f,q])]

                                         1       f
                             f Sqrt[1 - ----] + ---                                        ---     -- 
                                           2    2 q
             f                          2 q
(-(----------------------) + ----------------------) q   ---------------------     ---------------------    
               1       f               f
   f Sqrt[1 - ----] + ---              ---     -- 
                 2    2 q
              2 q

Simplify[q(Lower3DbPoint[f,q]/f-f/Lower3DbPoint[f,q])]

                                         1       f
                             f Sqrt[1 - ----] - ---                                        ---     -- 
                                           2    2 q
             f                          2 q
(-(----------------------) + ----------------------) q   ---------------------     ---------------------    
               1       f               f
   f Sqrt[1 - ----] - ---              ---     -- 
                 2    2 q
              2 q

Note that if we subtract the two 3dB frequencies we get the bandwidth 
of the filter (in cycles per second) as a function of the center frequency 
and q.

Simplify[Upper3DbPoint[f,q] - Lower3DbPoint[f,q]]

f
-
q

ContinuousSecondOrderRoot[1000,10]

-100 Pi + 100 I Sqrt[399] Pi

N[Abs[%]/ ( 2 Pi ) ]

1000.
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 A.1.3 - Continuous Filter Design

Now we can actually create a filter.  A bandpass filter (or resonator) is 
defined by placing the roots of a second order polynomial in the 
denominator.  This time we normalize the gain of the filter so at its peak 
(at the NaturalResonance frequency) it has unity gain.

MakeContinuousResonance[f_,q_] := 
ContinuousAdjustGain[1/ContinuousSecondOrderFilter[f,q],

ContinuousNaturalResonance[f,q]]

A typical bandpass filter (or resonator) with a center frequency of 
1000Hz and a q of 10 looks like this.

MakeContinuousResonance[1000,10]//N

                      6
  197392. + 3.93796 10  I
------------------------------------------------------- 
          7                2
3.94784 10  + 628.319 s + s

The gain of this bandpass filter is shown below.

ContinuousFreqResponse[MakeContinuousResonance[1000,10],
2000];
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-10

-5

dB

Finally, we can also show how the phase of this bandpass filter shifts as 
the frequency passes through the resonant frequency.  The phase is equal 
to zero near the center frequency since we have normalized the gain of 
the filter so that it is equal to one at the resonance frequency.
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Plot[Release[ContinuousFilterPhase[
MakeContinuousResonance[1000,10],f]],

{f,0,2000}];

500 1000 1500 2000

-1.5

-1

-0.5

0.5

1

1.5

The plot below shows the frequency response of second order bandpass 
filters with a center frequency of 1000Hz as the quality factor (q ) is 
varied.  The flattest curve is the frequency response of a filter with a q  
of .7 while the narrowest (sharpest) filter has a q  of 10.
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Likewise we can create a second order filter with a notch in the 
frequency response.  In this case all of the roots are in the numerator so 
there is a zero (or a notch) in the frequency response.  We normalize the 
filter's gain so that at DC there is unity gain.

MakeContinuousAntiResonance[f_,q_] := 
ContinuousAdjustGain[ContinuousSecondOrderFilter[f,q],

0]

A filter with a notch centered at 1000 Hz and with a q  of 10 is described 
by the following equation.

MakeContinuousAntiResonance[1000,10]

          -8            7                2
2.53303 10   (3.94784 10  + 628.319 s + s )
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The response of this filter in the frequency domain is shown below.

ContinuousFreqResponse[
MakeContinuousAntiResonance[1000,10],2000];
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 A.1.4 - More Test Code

The following function prints some interesting information about a filter 
function.

FilterCheck[filter_,f_,q_] :=
Block[{center,fd,f1,f2,g1,g2},

f1 = N[Lower3DbPoint[f,q]];
f2 = N[Upper3DbPoint[f,q]];
fd = N[ContinuousNaturalResonance[f,q]];
g = N[ContinuousFilterMag[filter,fd]];
g1 = N[ContinuousFilterMag[filter,f1]];
g2 = N[ContinuousFilterMag[filter,f2]];
Print["Gain at f1=",f1," is ",g1];
Print[" or ",dB[g1/g],"dB"];
Print["Gain at fd=",fd," is ",g];
Print["Gain at f2=",f2," is ",g2];
Print[" or ",dB[g2/g],"dB"];
]

FilterCheck[MakeContinuousResonance[1000,10],1000,10]

Gain at f1=947.497 is 0.71646
 or -2.89616dB
Gain at fd=997.497 is 1.
Gain at f2=1047.5 is 0.698751
 or -3.11355dB
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Note that the calculation of the 3dB points is only approximate.  As the q  
gets larger the approximation is better.

FilterCheck[MakeContinuousResonance[1000,100],1000,100]

Gain at f1=994.975 is 0.707996
 or -2.99939dB
Gain at fd=999.975 is 1.
Gain at f2=1004.97 is 0.706228
 or -3.0211dB

I've written the following function to look for the 3dB points.  I couldn't 
figure out any way to make Mathematica solve the equation for me.

FilterSearch[f_,v_,l_,h_] := Block[{vl,vm,vh,m},
m = (l + h) / 2;
If [Abs[m-l] < m/1000000,

Return[N[m]]];
vl = N[ContinuousFilterMag[f,l]];
vm = N[ContinuousFilterMag[f,(l+h)/2]];
vh = N[ContinuousFilterMag[f,h]];
If [ Between[vl,v,vm], 

FilterSearch[f,v,l,m],
If [ Between [vm, v, vh],

FilterSearch[f,v,m,h],
Print["Error vl=",vl," vm=",vm," vh=",vh]
]

]
]

Between[l_,m_,h_] := (m >= l && m < h) || 
(m < l && m >= h)

Get a simple resonator with center frequency 1000 and a q  of 2.

a=MakeContinuousResonance[1000,2]//N

          6             7
 4.9348 10  + 1.84643 10  I
------------------------------------------------------- 
          7                2
3.94784 10  + 3141.59 s + s

First look for the upper 3dB point.  Note that it is few percent lower in 
frequency than the equations predict.
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f2=FilterSearch[a,N[Sqrt[2]/2],1000,1200]

1165.81

Upper3DbPoint[1000,2]//N

1185.41

Likewise the lower 3dB point is also off by a bit.

f1=FilterSearch[a,N[Sqrt[2]/2],500,1000]

625.202

Lower3DbPoint[1000,2]//N

685.414

 A.1.5 - Playing Around

We can now combine notch and resonance filters to get more interesting 
responses.  The following combination of a resonance with a q of 2 at 
1000Hz and a notch with a q of 5 at 1100Hz is similar to the 
cascade-only ear filters described in the main part of this report.

MakeContinuousResonance[1000,2] *
MakeContinuousAntiResonance[1100,5]//N

                                   7               2
(0.103306 + 0.386535 I) (4.77689 10  + 1382.3 s + s )
--------------------------------------------------------------------------------------------------------- 
                      7                2
            3.94784 10  + 3141.59 s + s

ContinuousFreqResponse[MakeContinuousResonance[1000,2]*
MakeContinuousAntiResonance[1100,5]//N,2000];
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A second filter is shown below.  We have combined a broad notch with a 
narrow resonance to give a bandpass filter.

MakeContinuousResonance[1000,5] *
MakeContinuousAntiResonance[1000,2]//N

                              7                2
(0.02 + 0.19799 I) (3.94784 10  + 3141.59 s + s )
------------------------------------------------------------------------------------------------- 
                    7                2
          3.94784 10  + 1256.64 s + s

ContinuousFreqResponse[MakeContinuousResonance[1000,5]*
MakeContinuousAntiResonance[1000,2]//N,2000];
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We can gain more insight about this filter by examining the response in 
the complex s-plane.  This is shown below with the white spots 
representing the location of the resonance (or greatest response) and the 
black representing the zeros or lowest response.

gg[x_] := Abs[(MakeContinuousResonance[1000,5] *
MakeContinuousAntiResonance[1000,2])

/.s->x]
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DensityPlot[gg[x + I y],{x,-8000,8000},{y,-8000,8000},
PlotPoints->33];
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 A.1.6 - Usage

 A.2 - Discrete Time Filter Design

This section of the notebook describes how to calculate first and second 
order digital filters.  Discrete time filters are described by their 
response in the z-domain.  This section first describes some simple 
routines for describing polynomials in the z-domain and describes how to 
design first and second order filters.  The frequency response and 
impulse response of these filters are then shown.
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 A.2.1 - Polynomial Evaluation Utilities

This section of the report defines some Mathematica  functions to make 
it easier to work with filter functions in the Z-domain.  These functions 
allow us to define a new polynomial given a list of its coefficients 
(MakePoly ) , evaluate a polynomial (FilterEval ), and find the zeros and 
roots of ratios of polynomials (RationalZeros  and RationalPoles ).  
These function will be used in the next section when the ear filters are 
defined.

In this notebook polynomials in z  will be represented as lists of 
polynomial coefficients.  The coefficients of a polynomial are listed 
from the initial constant to the coefficient multiplying the highest 
power.  All coefficients past the end of the list are defined to be zero.  
The PolyCoeff  function is used to pick out the n 'th coefficient of a 
polynomial.  

PolyCoeff[coeffs_, n_] :=
If [ n < Length[coeffs],

coeffs[[n+1]],
0]

Given a list of coefficients, MakePoly  returns a Mathematica  
expression that represents the polynomial.  The use of z for the 
polynomial variable is arbitrary and was chosen to make the polynomials 
look good when printed.  

MakePoly[coeffs_List] := 
Block[{i},

PolyCoeff[coeffs,0] + 
Sum[PolyCoeff[coeffs,i] z^i,

{ i, 1, Length[coeffs]}]]

FilterEval will return the value of a polynomial at a given point by 
substituting the desired value into the polynomial.  Note, this function 
will work on all z-transforms.

FilterEval[poly_, x_] := (poly)/. z->x

For example the following is a third order polynomial and the result of 
evaluating it at z=1 .
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poly = MakePoly[{1,4,2,1}]

             2    3
1 + 4 z + 2 z  + z

FilterEval[poly,1]

8

Likewise we can define a rational function by writing the ratio of two 
MakePoly 's and then evaluate it using FilterEval .

rat = MakePoly[{1,-1,-1,1}] / MakePoly[{3,2,1}]

         2    3
1 - z - z  + z
----------------------------- 
            2
 3 + 2 z + z

FilterEval[rat,2]

3
--- 
11

Finally we define two functions, RationalPoles  and RationalZeros , 
that return a list of the poles and zeros of a rational function.  The 
function GetSolution  is used to pick apart the stylized expression that 
Mathematica uses to show the roots of an equation.

GetSolution[x_] :=
If [ x == {},

{},
x[[1]][[2]]]

RationalPoles[rat_] :=
Block[{roots},

roots = Solve[FilterEval[Denominator[rat],x] == 0,x];
Map[GetSolution, roots]]

RationalZeros[rat_] :=
Block[{roots},

roots = Solve[FilterEval[Numerator[rat],x] == 0,x];
Map[GetSolution, roots]]

Using the previously defined rational polynomial (rat ), we can find the 
poles and zeros of this filter:
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RationalPoles[rat]

 -2 - 2 I Sqrt[2]  -2 + 2 I Sqrt[2]
{----------------, ----------------} ---------------   ---------------  
        2                 2

RationalZeros[rat]

{-1, 1, 1}

 A.2.2 - The Filter Design Equations

This section describes some general first and second order filter design 
functions.   We will use these functions later to define the filters used in 
the ear model.

A one pole (first-order lowpass) filter is defined by the following 
transfer function (in the z  domain):

1 / MakePoly[{-epsilon,1}]

     1
----------------------- 
-epsilon + z

This filter will have a time constant of tau  if epsi lon  is given by

EpsilonFromTauFS[tau_, fs_] := E^(-1 / tau / fs)

Note that epsilon  is a function of not only the time constant (tau ) but 
also the sampling frequency (fs ) of the digital filter.  A first-order 
filter with time constant tau  is given by (high pass in this case):

FirstOrderFromTau[tau_, fs_] :=
MakePoly[{-EpsilonFromTauFS[tau, fs],1}]

A first order filter with a time constant (tau ) of 1ms is given by

fo = FirstOrderFromTau[0.001, 16000]

-0.939413 + z
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ListPlot[FindImpulseResponse[1/fo,32]];
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Likewise, a first-order filter with a corner frequency of f  is described 
by :

FirstOrderFromCorner[f_, fs_] :=
MakePoly[{1,-E^(-2 Pi f / fs)}]

A second order filter is defined by its center frequency (f ), quality 
factor (q ) and sampling frequency (fs ):

SecondOrderFromCenterQ[f_, q_, fs_] :=
Block[{cft, rho, theta},

cft := f/fs;
rho := E^(-Pi cft / q);
theta := 2 Pi cft Sqrt[1 - 1/(4 q ^ 2)];
MakePoly[{rho^2, -2 rho Cos[theta], 1}]]

The function Fil terGain  evaluates the filter transfer function (z  
transform) at the frequency f  by making the substitution
                    z -> E ^ ( I 2 Pi f / fs )
where fs  is the sampling interval.

FilterGain[filter_,f_,fs_] :=
FilterEval[filter,E^(I 2 Pi f / fs)]

Likewise the functions Fil terMag , FilterPhase  and FilterDb  compute 
the magnitude, phase and gain in dB of a digital filter.

FilterMag[filter_,f_,fs_] := 
Abs[FilterGain[filter,f,fs]]

FilterPhase[filter_,f_,fs_] := 
Arg[FilterGain[filter,f,fs]]
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FilterDb[filter_,f_,fs_] :=
Db[FilterMag[filter,f,fs]]

The function AdjustGain  adjusts the gain of a filter so that it has unit 
gain at any desired frequency.

AdjustGain[filter_,f_,fs_] :=
filter/FilterGain[filter,f,fs]

We define the MakeFil ter  function to design a filter with a given 
feedback (poles) and feedforward (zeros) response.  The resulting filter 
is just the ratio of the two polynomials.  In addition a frequency  and 
gain  are specified so that the resulting filter can be normalized to have 
any desired gain  at a specified frequency .  

MakeFilter[forward_, feedback_, fs_, f_, gain_] :=
gain AdjustGain[forward/feedback,f,fs]

The frequency response of a filter can be plotted in Mathematica  using 
the following function.

FreqResponse[coeffs_, fs_] :=
Block[{function,f},
function = N[dB[Abs[FilterGain[coeffs,f,fs]]]];
Plot[function,

{f,1,fs/2-fs/1000},
AxesLabel->{"  f","Response in dB"}]]

For example we can define a first order low pass filter with a 3dB point 
at 1000Hz (the frequency response would look better with a logarithmic 
frequency scale):

first = MakeFilter[1,FirstOrderFromCorner[1000,16000],
16000,0,1]//N

   0.324768
----------------------------- 
1. - 0.675232 z
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FreqResponse[first,16000];
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The gain at the corner frequency is given by the following Mathematica 
expression:

20 Log[ 10, Abs[N[FilterGain[first,1000,16000]]]]

-2.95485

A second order bandpass filter with center frequency 3000 and a Q  of 10 
is given by 

second = MakeFilter[1,
SecondOrderFromCenterQ[3000,10,16000],
16000,3000,1]//N

 -0.0953624 + 0.0380781 I
--------------------------------------------------- 
                         2
0.888865 - 0.724151 z + z

FreqResponse[second,16000];
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A less peaky response is possible using a lower Q .

second = MakeFilter[1,
SecondOrderFromCenterQ[3000,2,16000],
16000,3000,1]//N

  -0.389971 + 0.133203 I
--------------------------------------------------- 
                         2
0.554855 - 0.621189 z + z

FreqResponse[second,16000];
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The poles and zeros in the complex z-plane of a stable discrete time 
filter are inside the unit circle.  In general the resonant frequency of the 
root is proportional to the angle of the root from the positive real axis.  
Roots that are close to the unit circle will have a high q .  The plot below 
shows the roots of a second order section with resonant frequency of 
1000Hz and a sampling frequency of 16000Hz as the q  varies from .5 to 
2.2.
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ListPlot[Map[{Re[#],Im[#]}&,
Flatten[Table[

RationalZeros[
N[SecondOrderFromCenterQ[1000,q,16000]]],

{q,.501,2.2,.1}]]],
PlotRange->{{-1,1},{-1,1}},
AspectRatio->1,
PlotLabel->"Location of Roots vs. Q (Complex Z-Plane)"];
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The following plot shows the frequency response of a number of second 
order discrete bandpass filters with a center frequency of 1000Hz and a 
sampling frequency of 16000.  The flattest curve is the frequency 
response of a second order bandpass filter with a q  of .7 while the 
sharpest (narrowest) curve is the frequency response when the q  is 10.
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 A.2.3 - Time Domain Implementation

The following signal flow graph shows how the filter
               A0 + A1/z + A2/z^2
            - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                  1 + B1/z + B2/z^2
can be computed.  Each stage of the ear cascade model discussed in this 
report is implemented this way.
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The following function can be used only to evaluate the inverse 
z-transform of a ratio of two polynomials in z.
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FindImpulseResponse[filter_,maxn_] :=
Block[{num, denom, numorder, denomorder, response,

order, inverse, new},
new = Expand[Numerator[filter]] /

Expand[Denominator[filter]];
order = Abs[Exponent[Numerator[new],z]-

Exponent[Denominator[new],z]];
inverse = Expand[new/.z->1/z];
num = Expand[Numerator[inverse]];
denom = Expand[Denominator[inverse]];
inverse = Simplify[Expand[z^order num]/

Expand[z^order denom]];
num = Expand[Numerator[inverse]];
denom = Expand[Denominator[inverse]];
numorder = Exponent[num,z];
denomorder = Exponent[denom,z];
response = Table[0,{maxn}];
Do [ response[[i+1]] = 

(Coefficient[num,z,i] - 
 Sum[Coefficient[denom,z,j] *

response[[i-j+1]],
{j,1,Min[i,denomorder]}])/

 Coefficient[denom,z,0],
{i, 0, maxn-1}];

Return[response]]

This is the impulse response for a simple low pass filter.

FindImpulseResponse[z/(z-.9),10]

{1, 0.9, 0.81, 0.729, 0.6561, 0.59049, 0.531441, 
 
  0.478297, 0.430467, 0.38742}

 A.2.4 - Test Code

The following examples are from page 35 of [Rabiner1975]

Simplify[Table[-a a^i/(b-a) + b b^i/(b-a),{i,0,4}]]

              14             14
{1, (3.1658 10   - 1.82236 10   I) / 
 
                7                2
    ((3.94784 10  + 3141.59 s + s ) 
 
                 6             7               7
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      (-4.9348 10  - 1.84643 10  I + 3.94784 10  b + 
 
                         2
        3141.59 b s + b s )) + 
 
                   2
                  b
   --------------------------------,    -------------------------------   
                 6             7
       -4.9348 10  - 1.84643 10  I
   b + ----------------------------       --------------------------- 
                 7                2
       3.94784 10  + 3141.59 s + s
 
             21             21
  (4.92712 10   + 4.94613 10   I) / 
 
                7                2 2
    ((3.94784 10  + 3141.59 s + s )  
 
                 6             7               7
      (-4.9348 10  - 1.84643 10  I + 3.94784 10  b + 
 
                         2
        3141.59 b s + b s )) + 
 
                   3
                  b
   --------------------------------,    -------------------------------   
                 6             7
       -4.9348 10  - 1.84643 10  I
   b + ----------------------------       --------------------------- 
                 7                2
       3.94784 10  + 3141.59 s + s
 
              28             29
  (-6.70128 10   + 1.15384 10   I) / 
 
                7                2 3
    ((3.94784 10  + 3141.59 s + s )  
 
                 6             7               7
      (-4.9348 10  - 1.84643 10  I + 3.94784 10  b + 
 
                         2
        3141.59 b s + b s )) + 
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                   4
                  b
   --------------------------------,    -------------------------------   
                 6             7
       -4.9348 10  - 1.84643 10  I
   b + ----------------------------       --------------------------- 
                 7                2
       3.94784 10  + 3141.59 s + s
 
             36             35
  (2.46119 10   + 6.67948 10   I) / 
 
                7                2 4
    ((3.94784 10  + 3141.59 s + s )  
 
                6             7               7
      (4.9348 10  + 1.84643 10  I - 3.94784 10  b - 
 
                         2
        3141.59 b s - b s )) + 
 
                   5
                  b
   --------------------------------}   -------------------------------  
                 6             7
       -4.9348 10  - 1.84643 10  I
   b + ----------------------------       --------------------------- 
                 7                2
       3.94784 10  + 3141.59 s + s

Simplify[FindImpulseResponse[1/(1-a z)/(1-b z),5]]
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                   -8             -8
{0, 0, ((1.35095 10   - 5.05479 10   I) 
 
                7                2
     (3.94784 10  + 3141.59 s + s )) / b, 
 
               -15             -15
  ((-2.37258 10    - 1.36575 10    I) 
 
                7                2
     (3.94784 10  + 3141.59 s + s ) 
 
               6             7               7
     (4.9348 10  + 1.84643 10  I + 3.94784 10  b + 
 
                        2      2
       3141.59 b s + b s )) / b , 
 
              -8             -8
  ((1.35095 10   - 5.05479 10   I) 
 
                7                2
     (3.94784 10  + 3141.59 s + s ) 
 
                   -8             -8
     (((-1.35095 10   + 5.05479 10   I) 
 
                     7                2
          (3.94784 10  + 3141.59 s + s )) / b + 
 
                    -15             -15
       ((-2.37258 10    - 1.36575 10    I) 
 
                         6             7
          Power[4.9348 10  + 1.84643 10  I + 
 
                      7                      2
            3.94784 10  b + 3141.59 b s + b s , 2]) / 
 
         2
        b )) / b}

The first example is the impulse response for a perfect oscillator with a 
pair of poles on the unit circle.
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ListPlot[FindImpulseResponse[1/(1-1.99z+z*z),100],
PlotJoined->True];
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A second order filter with finite q will have an impulse response that is 
a decaying sinusoid.  The following example shows the impulse response 
to a second order filter with a center frequency of 1000Hz, sampling 
frequency of 8000Hz and a q of 10.

filter = SecondOrderFromCenterQ[1000,10,8000] //N

                        2
0.924465 - 1.36109 z + z

RationalPoles[1/filter]

{0.680544 - 0.679209 I, 0.680544 + 0.679209 I}

ListPlot[FindImpulseResponse[1/filter,50],
PlotJoined->True];
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 A.2.5 - Usage
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