
Lyon's Cochlear Model
Malcolm Slaney

Advanced Technology Group
Apple Technical Report #13

Copyright © 1988
Apple Computer, Inc
malcolm@apple.com

Middle
Ear

Cochlea

Outer
Ear

Auditory
Nerve

From Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy, by Richard Kessel and
Randy H. Kardon, Copyright © 1979, W. H. Freeman and Company. Reproduced with
permission.

LyonsCochlea.mma 1

 1 - Introduction

 1.1 - About this report

This technical report describes the implementation of a model of the
cochlea developed by Richard Lyon. Automatic speech recognition is a
difficult problem and by studying the human cochlea we will gain a
better understanding of how humans perceive speech. Hopefully this
knowledge will help us to design better speech recognition systems.

 1.2 - About Mathematica

The words you are now reading were formatted using a revolutionary
symbolic math program called Mathematica. The resulting document is
called a notebook. Mathematica is a symbolic math package developed by
Wolfram Research Institute and is available on many popular computers.
This report is available as a conventional paper document but more
interestingly is also available as an electronic document. Much like a
scientist's notebook, this report is a living, breathing document. Readers
are encouraged to play with this notebook, modify the models and extend
it to apply to their own research.

Mathematica is used here to describe the cochlear model for two reasons.
First, it provides a portable way to describe the characteristics of the
computations. This will allow more people to understand the important
characteristics of the model than if the model were described in a
conventional programming language. Secondly, and perhaps more
importantly, because Mathematica is a complete symbolic math package
it allows the reader to explore the mathematics of the model. Thus if
the reader is unsure about a concept it is possible to play with the
equations that are confusing.

The Mathematica system is described in a book written by Stephen
Wolfram called "Mathematica: A System for Doing Mathematics by
Computer." Like many symbolic math packages (for example Macsyma) a
model is built using textual equations. These equations can then be
manipulated algebraically or actually used for computation. In this

LyonsCochlea.mma 2

report Mathematica is mostly used for its computational ability and its
excellent graphics.

One characteristic of a Mathematica notebook is that details of the
model can be hidden in closed cells. Like an outline, this notebook is
organized into sections and subsections. A section of this notebook is
used to describe one part of the model (for example the filter design
software) and subsections are used to state the equations, show
graphical examples and perhaps include some test code. Most readers of
this report are probably not interested in the test code and these
subsections can be closed so as to not clutter the report. See the
Mathematica help screens for information on opening and closing
sections of a notebook.

The information in this report is being published not only on paper but
also on Macintosh® 3 1/2" floppy disk. By publishing this material
electronically we hope to give other scientists and engineers better
acccess to this information. Not only do we hope that readers will
understand the model better but we hope they will be able to better apply
it to their own work.

 1.3 - How to use this report

This report can be read two ways. The paper copy of this notebook can be
read like a normal report. Readers who are not familiar with the
Mathematica notation used to write this report can ignore the equations.
We have written this report so that most of the material is explained in
text and figures. While equations (and programs) are entered into
Mathematica with linear text the basic principles should be evident for
those readers who have questions about the details.

We hope that most readers will be able to access a copy of Mathematica
and read the electronic version of this report. A notebook reader is
provided on the floppy disk to allow readers to browse through the
document but the real power of the notebook comes from interacting
with the equations defined here. Learning is not a one way process and
the material will be better understood if you, the reader, can interact
with the material as I, the author, did while writing this report.

LyonsCochlea.mma 3

The best way to interact with this notebook is to read the description,
study the examples and then modify an example to see how different
parameters give different results. For example an appendix to this
report describes digital filtering and provides functions to design first
and second order filters. Much can be learned about digital filtering by
combining these filters and studying the resulting frequency response or
pole-zero plots.

Readers might also want to modify this model to better fit their own
experience or ideas. For example this notebook describes a relatively
simple model of the effects of the outer and middle ears on the sound. A
reader might be interested in providing a better model or removing the
outer and middle ear filters completely and studying the change in
response. As another example, this report describes a simple Automatic
Gain Control (AGC) to compensate for the large range of sounds produced
by humans. This notebook explores several variations on the basic AGC
but readers might want to try their own.

 1.4 - Prerequisites

This report was written for readers with some knowledge of signal
processing. The filters in this notebook are described using the Laplace
and Z transforms. While we never actually calculate a Laplace or Z
transform, readers who are comfortable with these tranformations will
get the most out of this notebook. More information about digital signal
processing can be found in [Oppenheim75].

An appendix to this report defines several functions that are used to
design continuous and digital filters. In the rest of this report the
names used for these functions should be self explanatory. For readers
of the electronic version of this document, more information is available
about any function by selecting the function name and picking "About the
selection" from the menu.

LyonsCochlea.mma 4

 1.5 - About This Notebook

The purpose of this notebook is to describe the design and
implementation of a model of sound propagation in the human cochlea.
Two versions of the cochlear model are described here. In the model
originally published a combination of a cascade filter bank and a parallel
set of resonators were used. Later it was realized that these resonators
could be folded into the cascade filter bank to build a cascade-only
version of the model. It is important to realize that the behaviour of
these two models are identical; the change only affects the
computational efficiency.

This report first describes the philosophy of this cochlea model and the
two different implementation techniques are described and illustrated.
The model of the cochlea and its implementation as a cascade filter bank
are then described. Finally the Automatic Gain Control (AGC) used in this
model is explored.

LyonsCochlea.mma 5

 2 - The Ear Model

 2.1 - Philosophy

The cochlear model to be described here was first sketched by Richard
Lyon [Lyon82 and Lyon85] based on work described elsewhere
[Schroeder73 and Zweig76]. These papers should be consulted for more
information about the theory of the cochlea on which this model is based.
The purpose of this notebook is to describe a number of the details that
have not been previously published. The information in this report should
be sufficient to allow the reader to implement their own version of this
cochlear model.

This model describes the propagation of sound in the inner ear and the
conversion of the acoustical energy into neural representations. We do
not describe the effect on the sound as it enters the ear and travels down
the ear canal. This is commonly thought to consist of a simple linear
filter of the sound and thus to be relatively unimportant for speech
recognition. The middle ear couples the energy that is traveling in the
ear canal through the ear drum and a series of bones into the fluid filled
chambers of the cochlea. The middle ear is also thought to provide some
automatic gain control (AGC) via the stapedial reflex, but we have chosen
not to model this mechanism [Pickels82, p21].

This model does not try to literally describe each structure in the
cochlea but instead models the cochlea as a "black box." Sound entering
the cochlea via the oval window is converted into nerve firings that then
travel up the auditory nerve into the brain. The output of this model is a
vector proportional to the firing rate of neurons at each point in the
cochlea.

While many of the structures in this model (such as half-wave
rectification or automatic gain control) are present in the cochlea, we
have implemented our model differently to make the computations easier.
Hopefully the results or our model are similar to the real cochlea. A
more accurate description of the cochlea would model the propagation of
pressure waves in two dimensional or three dimensional ducts, replace
the AGC described later in this report with structures similar to the

LyonsCochlea.mma 6

outer hair cells and finally would assume a continuous-time analog
implementation. This type of model is described in other works [Lyon88a
and Lyon88b].

 2.2 - Overview

The cochlear model described by Lyon [Lyon82] combines a series of
filters that model the traveling pressure waves with Half Wave
Rectifiers (HWR) to detect the energy in the signal and several stages of
Automatic Gain Control (AGC). This structure is shown in the figure
below.

Outer Ear

Middle Ear Filter Filter Filter

 AGC AGCAGC

HWR HWR HWR...

Filtering

Detection

Compression

Preemphasis

Sound that enters the outer and the middle ear is passed through the oval
window into the cochlea. Once in the cochlear duct the the pressure
wave propagates down the basilar membrane. The stiffness of the
basilar membrane varies smoothly over its length and at any one point
will resonate most strongly with a pressure wave of a particular
frequency. At each stage of the cochlea some of this motion is sensed by
the hair cells. It is these cells that convert the mechanical signals
which in turn cause stimulation of the neurons which commicate with
higher levels in the brain.

An important characteristic of the cochlea is that energy in the
acoustitic wave is separated by frequency and each point in the cochlea
will respond best to one frequency. In a sense the cochlea maps the
frequency content of the signal into the spatial domain. The cochlea near
its base (where the sound enters) is most sensitive to high frequency

LyonsCochlea.mma 7

sounds and as the wave travels down the cochlea lower and lower
frequencies are sensed.

This notebook describes the filters and the AGC's shown in the picture
above. The outputs of the AGC stage are positive signals that indicate
the firing rate of the neurons leading to the brain. This notebook will
first describe the characteristics of a filter stage. A number of
Mathematica structures used to design digital filters are described in an
Appendix. We will then describe the construction of each stage. Finally
we will conclude with a discussion of the AGC used in this model.

Two versions of the filtering stage are described here. In the original
formulation each filter stage was implemented as two separate filters.
The sound passes through a cascade of filters to model the propagation
down the cochlea and a parallel set of filters model the basilar
membrane motion. For this reason the original model is known as the
cascade-parallel formulation. Later it was discovered that the poles and
zeros of the original two filters per stage could be rearranged and each
stage implemented as a single second order filter. This is called the
cascade-only filter bank.

 2.3 - The Cascade-Parallel Model

The cochlea is best modeled using a continuous differential equation.
This is very difficult to implement on a digital computer so instead we
split the cochlea into a large number of discrete sections. We can then
model each section with a simple linear transfer function. For small
enough sections the errors involved will be negligible and our digital
implementation will be accurate. In this implementation of the model
we have used approximately 80 stages.

The cochlea model described by Lyon [Lyon82] combines a series of notch
filters that model the traveling pressure waves with resonators to model
the conversion of pressure waves into basilar membrane motion or
velocity. The combination of notch filters and resonators used to model
the cochlea are shown below.

LyonsCochlea.mma 8

...
Outer Ear

Middle Ear

...

Notch Filters

Resonators

F1
F

2
FN

High Frequency Low Frequency

At each point in the cochlea the acoustic wave is filtered by a notch
filter. Each notch filter operates at successfully lower frequencies so
the net effect is to gradually low pass filter the acoustic energy. An
additional resonator (or bandpass filter) picks out a small range of the
traveling energy and models the conversion into basilar membrane
motion. It is this motion of the basilar membrane that is detected by the
inner hair cells. In the work to follow a combination of a notch and a
resonator is called a stage.

The filters used in this model have pole-zero plots as shown below.
Sound travels down the line of notch filters, at each stage getting
filtered at lower and lower frequencies. At each stage a resonator (or
bandpass filter) senses the output. The following plots show the
locations of the poles and zeros in the s-plane for several of the notch
and resonator filters.

LyonsCochlea.mma 9

X

X

O

O

X

X

O

X

X

O

O

X

X

O

X

X

O

O

X

X
O

Notch

Resonator

Channel 1 Channel 2 Channel 3

The frequency domain responses of the 1, 4, 10, 30, 60 and 75'th stages
are shown below. The curves with their peaks at the right represent the
response of the low numbered stages while later stages respond best to
low frequencies. These curves include the effects of a simple model of
the outer and middle ears.

2000. 4000. 6000. 8000.
 f

-125.

-100.

-75.

-50.

-25.

25.

Response in dB

LyonsCochlea.mma 10

 2.4 - Parameters of Cascade-Parallel Model

We will first describe the parameters of the original (cascade - parallel)
cochlea model. To make the description simpler we will assume there is
no sampling and express the filters in the Laplace domain. The bandwidth
of each ear filter is a function of its center frequency. At high
frequencies the bandwidth is approximately equal to the center frequency
divided by a constant (EarQ). At lower frequncies the bandwidth
approaches a constant given by EarBreakFreq/EarQ .

EarBandwidth[cf_] := Sqrt[cf^2 + EarBreakFreq^2]/EarQ

where

EarBreakFreq = 1000.0;

EarQ = 8;

Limit[EarBandwidth[f],f->0]

125.

The bandwidth of the ear filter as a function of its center frequency
looks like this:

2000 4000 6000 8000
 Hz

Bandwidth of each Channel

200

400

600

800

1000

Hz

Successive ear filter stages are overlapped by a fraction of their
bandwidth. This parameter is arbitrary but smaller numbers lead to more
computations. We currently overlap 4 stages within the bandpass region
of any one filter.

EarStepFactor = .25;

LyonsCochlea.mma 11

We model each section of the cochlea with a second order section. We
use a pole at the center frequency to give a slight peak to the filter's
response at its center frequency. A zero is placed in the response
slightly above the center frequency to provide the band rejection.

The center frequency and quality factor (q) of the zeros are given by:

OriginalZeroCF[cf_] := cf +
EarBandwidth[cf]*EarStepFactor*

OriginalEarZeroOffset

OriginalEarZeroOffset = 0.5;

Note, that OriginalEarZeroOffset is a factor that determines how far
the zero is offset from the center frequency of the filter stage. The
offset is a function of the center frequency change (EarBandwidth[cf]
* EarStepFactor) and models the fact that the response of the filter is
slightly lower above the notch than it is below.

OriginalZeroQ[cf_] := OriginalEarSharpness*
OriginalZeroCF[cf]/
EarBandwidth[cf]

OriginalEarSharpness = 5.0;

OriginalEarSharpness is a parameter that in effect sets how much
sharper the notch (zero) is than the resonator (pole.)

2000 4000 6000 8000
 Hz

Notch (Zero) Q vs. Center Frequency

20

25

30

35

40

The poles (resonators) in the response are centered at the center
frequency of each stage but have a lower bandwidth or q .

OriginalPoleCF[cf_] := cf

LyonsCochlea.mma 12

OriginalPoleQ[cf_] := cf / EarBandwidth[cf]

2000 4000 6000 8000
 Hz

Resonator (Pole) Q vs. Center Frequency

4

5

6

7

8

Each section or stage of the discrete cochlea is numbered starting at the
base. Those stages that are closest to the base (low indices) are
sensitive to the highest frequencies and stages with higher indices
respond to lower frequencies. The center frequency of each discrete ear
filter is defined by the following recursive relationship: [Note, Block is
a Mathematica function that allocates storage for a list of variables,
just cf in this case, and then executes the statements that follow.]

OriginalEarChannelCF[index_] :=
OriginalEarChannelCF[index] =
If [index <= 0,

8000,
Block[{cf},

cf = OriginalEarChannelCF[index-1];
cf - EarStepFactor EarBandwidth[cf]]]

Starting at an arbitrary high frequency (8000 Hz for index = 0) we step
down in frequency by EarStepFactor times the bandwidth of the filter
at the previous frequency.

LyonsCochlea.mma 13

20 40 60 80
 Stage Index

 Center Frequency

2000

4000

6000

(Hz)

 2.5 - Cascade-Parallel Filter Design

We can now design the actual filters used in the original ear model. Each
notch filter is a combination of a pair of poles (with low q) and a pair of
zeros (with a higher q and higher center frequency.) To simplify the
explanation we will illustrate the model by showing the continuous time
filters. [Note the function ContinuousSecondOrderFil ter and other
basic filter design functions are defined in the Appendix to this report.]

OriginalNotch[index_] :=
Block[{cf,zerof,polef},

cf = OriginalEarChannelCF[index];
zerof = ContinuousSecondOrderFilter[

OriginalZeroCF[cf],
OriginalZeroQ[cf]];

polef = ContinuousSecondOrderFilter[
OriginalPoleCF[cf],
OriginalPoleQ[cf]];

N[ContinuousAdjustGain[zerof/polef,0]]]

For example this is the response to the 10'th notch filter.

LyonsCochlea.mma 14

onp = ContinuousFreqResponse[OriginalNotch[10],10000];

2000 4000 6000 8000 10000
 Hz

Response

-8

-6

-4

-2

dB

A resonator converts pressure in the cochlea into basilar membrane
motion. We represent the resonator as a combination of a zero at DC
(implemented as a differentiator) and a pair of poles. The poles (or
bandpass filter) are slightly below the center frequency of the stage so
that they emphasize the frequencies near the cutoff frequency. To make
the computations easier the poles of this stage are actually placed at the
same location as the poles in the resonator of the following stage. The
reasons for this will be described in the next section. In the latest
model we combine the poles in adjacent stages to reduce the
computational effort.

OriginalResonator[index_] :=
Block[{cfplus1,zerof,polef},

cfplus1 = OriginalEarChannelCF[index+1];
zerof = s;
polef = ContinuousSecondOrderFilter[

OriginalPoleCF[cfplus1],
OriginalPoleQ[cfplus1]];

N[ContinuousAdjustGain[zerof/polef,cfplus1]]]

This is the response of the 10'th resonator. The sharp cutoff at DC is
caused by the differentiator.

LyonsCochlea.mma 15

orp = ContinuousFreqResponse[OriginalResonator[10],
10000];

2000 4000 6000 8000 10000
 Hz

Response

-80

-60

-40

-20

dB

We can overlay these two last plots to show that the resonator peaks at
the lower edge of the notch filter.

Show[onp,orp];

2000 4000 6000 8000 10000
 Hz

Response

-35

-30

-25

-20

-15

-10

-5

dB

Finally the response of the combined notch and the resonance filters is
shown below (for the 10'th filter stage.)

LyonsCochlea.mma 16

ContinuousFreqResponse[OriginalResonator[10] *
OriginalNotch[10], 10000];

2000 4000 6000 8000 10000
 Hz

Response

-60

-50

-40

-30

-20

-10

dB

 2.6 - The Cascade-Only Model

The latest version of the ear model combines the notch and resonator
filters of each stage into a single filter. This gives a cascade-only
representation of the ear model instead of the cascade-parallel version
described above. Rearranging the filters does not change the the net
result of the filtering; its only effect is to reduce the computational
effort needed to model the cochlea.

The pole-zero plots of the original model are shown again below. We
have circled the poles and zeros that are combined to form each stage of
the cascade-only filter bank. First note that every resonator includes a
zero at DC. Since all the filters shown here are linear we can move the
differentiator into an initial preemphasis stage.

LyonsCochlea.mma 17

X

X

O

O

X

X

O

X

X

O

O

X

X

O

X

X

O

O

X

X
O

Notch

Channel 1 Channel 2 Channel 3

Resonator

A more important optimization is possible if the poles in each notch
filter are combined with the poles in the previous resonator filter. This
optimization is shown above. The zeros from each notch filter and the
poles from a resonator and the next notch filter are rearranged into a
single filter. This is possible because the locations of the poles in the
resonator filters were chosen to be at the same location as the poles in
the succeeding notch filter.

The new cascade-only ear filter has an initial stage that combines the
effects of the outer and middle ears, the differentiator (zero at DC) that
was originally part of the resonator and a pair of poles from what was
the first stage. Each succeeding stage is a pair of poles and a pair of
zeros and the output of each stage is input to not only the next stage in
the cascade but also the detection blocks (HWR).

The cascade-only filter structure has slightly different parameters. We
repeat the following equations with several small changes. Like before
the center frequency of each stage is described by the location of the
poles. This means the center frequency of the associated zero is an extra

LyonsCochlea.mma 18

channel higher than the pole frequency therefore EarZeroOffset changes
from 0.5 to 1.5.

CascadeZeroCF[cf_] := cf +
EarBandwidth[cf]*EarStepFactor*

EarZeroOffset

EarZeroOffset = 1.5;

CascadeZeroQ[cf_] := EarSharpness*CascadeZeroCF[cf]/
EarBandwidth[cf]

EarSharpness = 5.0;

CascadePoleCF[cf_] := cf

CascadePoleQ[cf_] := cf / EarBandwidth[cf]

We define a new version of EarChannelCF that is based on a sampled
version of the ear model. Now the maximum channel frequency is a
function of the Nyquist rate (fs /2) and the location of the zeros in the
first stage of filtering.

MaximumEarCF[fs_] :=
Block[{topf},

topf = fs / 2.0;
topf - (CascadeZeroCF[topf]-topf) +

EarBandwidth[topf] EarStepFactor]

Starting at the MaximumEarCF (index = 0) the center frequency of
each channel decreases by EarStepFactor of the bandwidth at the
previous stage. [Note that since the EarChannelCF function is used
everywhere in the ear model we have used a Mathematica technique
known as dynamic programming (or caching) to remember previously
calculated values in an array. Later, if we want to find the center
frequency of an already computed filter section, we only need to look in
the array.]

EarChannelCF[index_, fs_] :=
EarChannelCF[index,fs] =

If [index <= 0,
 MaximumEarCF[fs],

Block[{cf},
cf = EarChannelCF[index-1, fs];
cf - EarStepFactor EarBandwidth[cf]]]

LyonsCochlea.mma 19

Note that this expression is a function of the sampling frequency (fs).
To prevent aliasing it is important that the zero in the first stage be
below the Nyquist rate.

CascadeZeroCF[EarChannelCF[1,16000]]

7986.52

The center frequency of each stage in the cascade-only filter bank is
shown below.

20 40 60 80
 Stage Index

 Center Frequency

2000

4000

6000

(Hz)

Test Code

The following is some test code to show that the Mathematica
definitions above are working correctly.

samplingfrequency=16000

16000

cf=EarChannelCF[1,samplingfrequency]

7625.99

EarBandwidth[cf]

961.409

CascadeZeroCF[cf]

7986.52

CascadeZeroQ[cf]

41.5355

LyonsCochlea.mma 20

CascadePoleCF[cf]

7625.99

CascadePoleQ[cf]

7.93209

LyonsCochlea.mma 21

 3 - The Cochlea Filter Bank

This section describes the cascade of filters that define the ear model.
As described above there is an initial preemphasis stage followed by the
cascade of ear filter stages. This section will define the preemphasis
stage, each of the cochlea stages and then show their combined frequency
response. In the remainder of this report we will describe the filters in
the z-domain. Again, see the Appendix of this report for the definitions
of the filter design functions used here.

 3.1 - Preemphasis Stage

Our model of the ear uses a simple preemphasis filter to roughly model
the effects of the outer and middle ear. This is followed by a
differentiator and a high frequency compensator that are common to all
of the stages. Finally, there is a string of second order filters to model
each section of the cochlea.

The outer and middle ear add a slight high pass response to the system.
This initial high pass filter also helps to normalize (or whiten) the input
to the inner ear and makes it easier to display the resulting output. The
outer and middle ears are modelled here with a high pass filter with a
corner frequency of 300 Hz.

EarPremphCorner = 300.0;

OuterMiddleEarFilter[fs_] :=
MakeFilter[FirstOrderFromCorner[EarPremphCorner,fs],

MakePoly[{1}],
fs, 0, 1.0]

OuterMiddleEarFilter[16000]//N

8.99808 (1. - 0.888865 z)

LyonsCochlea.mma 22

FreqResponse[OuterMiddleEarFilter[16000],16000];

2000 4000 6000 8000
 f

5

10

15

20

25

Response in dB

Each stage of the cascade-parallel filter bank described in [Lyon82] uses
a differentiator to convert pressure waves into basilar membrane
motion. Each differentiator is adjusted so that at the center frequency
of the stage the differentiator has unity gain. In this model we have
"factored" this differentiator out of each stage and it appears just once
before the ear cascade (a term of the form 1-z). Later when we define
the stages of the cascade we will adjust the gain of each stage so that
the differeniator has unity gain at its center frequency. In addition we
combine the differentiator with a zero at the Nyquist rate (1+z) to
compensate for the close spacing of the poles near z=-1 for high
frequencies. This combined filter looks like:

Compensator[fs_] := MakeFilter[MakePoly[{1,0,-1}],
MakePoly[{1}],
fs,
fs/4,
1.0]

Compensator[16000]

 2
0.5 (1 - z)

In the frequency domain the response looks like:

LyonsCochlea.mma 23

FreqResponse[Compensator[16000],16000];

2000 4000 6000 8000
 f

-60

-50

-40

-30

-20

-10

Response in dB

Combining the outer/middle ear filter and the compensator the total
response is:

FreqResponse[Compensator[16000]
OuterMiddleEarFilter[16000], 16000];

2000 4000 6000 8000
 f

-60

-40

-20

20

Response in dB

Finally we can combine these initial stages with the first two poles of
the ear filters. The first stage of the cascade is a combination of the
outer/middle ear filter, the compensator and a pole pair.

LyonsCochlea.mma 24

EarFrontFilter[fs_] :=
(OuterMiddleEarFilter[fs]
 Compensator[fs]
 MakeFilter[MakePoly[{1}],

SecondOrderFromCenterQ[
CascadePoleCF[MaximumEarCF[fs]],
CascadePoleQ[MaximumEarCF[fs]],
fs],

fs,
fs/4,
1.0])

The combined initial filters and first two poles of the ear filter have the
response shown below.

EarFrontFilter[16000]//N

 2
(-1.45178 + 7.39389 I) (1. - 0.888865 z) (1. - 1. z)

 2
 0.677314 + 1.64344 z + z

FreqResponse[EarFrontFilter[16000],16000];

2000 4000 6000 8000
 f

-60

-40

-20

20

40

Response in dB

 3.2 - The Stage Filters

D e f i n i t i o n s

The stages of the filter bank that simulate each section of the cochlea
are each a combination of two poles and two zeros. Recall that a pair of
poles with a broad response is combined with a pair of zeros at a slightly
higher frequency.

LyonsCochlea.mma 25

EarStageFilter[cf_, fs_, dcgain_] :=
MakeFilter[

SecondOrderFromCenterQ[CascadeZeroCF[cf],
CascadeZeroQ[cf],
fs],

SecondOrderFromCenterQ[CascadePoleCF[cf],
CascadePoleQ[cf],
fs],

fs,
0.0,
dcgain]

This filter has the following response (shown here for the filter section
centered at 5000Hz.) Note that there is a slight peak in the response
before the notch due to the poles.

2000 4000 6000 8000
 f

-15

-12.5

-10

-7.5

-5

-2.5

Response in dB

We set the gain of each stage in the ear filter to compensate for the gain
provided by the differentiator in the preemphasis stage. The gain of an
ideal differentiator is proportional to frequency. Preceeding all channels
of the ear filter with a single differentiator will cause the lower
frequency channels (high index) to have a much lower output then the
preceeding stages. While within a single channel we still want to add a
term that is proportional to frequency we want to adjust the
differentiator at each stage so it has unity gain at the center frequency.

To compensate for the single differentiator we adjust the gain of each
stage of the cascade filter by dividing its response by its center
frequency (cf). But since all of the filter stages are in series we must

LyonsCochlea.mma 26

also remove the effect of the gain from the previous section. Thus the
gain at each stage is given by:

EarFilterGain[i_,fs_] := EarChannelCF[i-1,fs]/
EarChannelCF[i,fs]

When the differentiator is combined with each stage of the ear filter (by
multiplying their responses) the net effect of this gain term is to
normalize the differentiator so that it has unity gain. The gain at each
stage is shown below.

20 40 60 80
 Channel #

1.04

1.06

1.08

1.12

Gain (dB)

To produce the final filter function we combine the response for
EarFrontFilter (section 0) with those defined by the EarStageFi l ter
function.

Again we use what Mathematica refers to as dynamic programming
(caching) to save the resulting filters. It is important to remember that
this function implicitly depends on the values of a number of constants
(for example EarSharpness and EarQ) and if any of these parameters
are changed then the Mathematica function Clear[EarFilter] must be
used to invalidate the cache.

Clear[EarFilter]

LyonsCochlea.mma 27

EarFilter[i_,fs_] :=
EarFilter[i,fs] =
If [i == 0,

N[EarFrontFilter[fs]],
Block[{cf, stagegain},

cf = EarChannelCF[i,fs];
stagegain = EarFilterGain[i,fs];
If [CascadePoleQ[cf] < 0.5 ,

0,
N[EarStageFilter[cf,fs,stagegain]]]]]

The filter calculated using the function SecondOrderFromCenterQ will
have real roots when the value of q is less than 0.5. We arbitrarily stop
the cascade structure when this happens. Solving the equation
CascadePoleQ[f] == .5 we find this is true for all stages with a center
frequency less than 63hz.

Solve[CascadePoleQ[f] == .5,f]

{{f -> 62.6224}}

EarChannelCF[85,16000]

71.9869

EarChannelCF[86,16000]

40.656

Test Cases

These test cases are used to verify the consistency between this
Mathematica model and the C and Lisp versions.

EpsilonFromTauFS[5/cf,fs]

 -1525.2/fs
E

FirstOrderFromTau[5/cf,fs]//N

 -1.
---------------- + z---------------
 1525.2/fs
2.71828

LyonsCochlea.mma 28

FirstOrderFromCorner[cf/4,fs]//N

 1. z
1. - ----------------- ----------------
 11978.9/fs
 2.71828

SecondOrderFromCenterQ[cf/4,2,fs]//N

 11598.5
 2. z Cos[-------] ------
 -5989.44/fs 2 fs
2.71828 + z - ----------------- ----------------
 2994.72/fs
 2.71828

EarPreCoeffs[16000]//N

EarPreCoeffs[16000.]

EarFrontCoeffs[16000]//N

EarFrontCoeffs[16000.]

EarCascadeCoeffs[cf,16000,1.032525595]//N

EarCascadeCoeffs[7625.99, 16000., 1.03253]

G r a p h i c s

Using the following functions we can plot the poles and zeros of all of
these filters.

PlotPoles[fs_] :=
ListPlot[Map[{Re[#],Im[#]}&,

Flatten[Table[RationalPoles[
EarFilter[i,16000]],

{i,0,85}]]],
PlotRange->{{-1,1},{-1,1}},
AspectRatio->1,
PlotLabel->"Poles of Ear Filter (z domain)"]

LyonsCochlea.mma 29

PlotPoles[16000];

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

Poles of Ear Filter (z domain)

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

This plot shows the poles of the filter bank going from high frequencies
(near the base of the cochlea) around the unit circle to those of the low
frequencies. Recall in the z-domain that frequency is mapped into a
position on the unit circle. DC is at 1 on the real axis, the Nyquist
frequency is at -1 and all other frequencies are on the unit circle
between these two points. In addition the distance the pole (or zero) is
from the unit circle is proportional to the quality factor of the filter.
The poles in the cochlear filter have a lower q and thus are farther from
the unit circle then the zeros shown below.

PlotZeros[fs_] :=
ListPlot[Map[{Re[#],Im[#]}&,

Flatten[Table[RationalZeros[
EarFilter[i,16000]],

{i,0,85}]]],
PlotRange->{{-1,1},{-1,1}},
AspectRatio->1,
PlotLabel->"Zeros of Ear Filter (z domain)"]

LyonsCochlea.mma 30

PlotZeros[16000];

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

Zeros of Ear Filter (z domain)

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

In the s-plane the poles look like (using the substitution z = exp[sT]) :

PlotSPoles[fs_,smax_] :=
ListPlot[Map[{Re[#],Im[#]}&,

Log[Flatten[Table[RationalPoles[EarFilter[i,16000]
{i,0,85}]]]] fs,

PlotLabel->"Poles of Ear Filter (s Plane)",
PlotRange->{{-smax,smax},{-smax,smax}},
AspectRatio->1,
Axes->{0,0}]

LyonsCochlea.mma 31

PlotSPoles[16000,5000];

-4000 -2000 2000 4000

Poles of Ear Filter (s Plane)

-4000

-2000

2000

4000

 3.3 - The Cascade Filters

We can now define a cascade response. At each position in the cochlea
the response is the product of the response of this section and all
preceeding sections. In Mathematica this is written:

Clear[CascadeFilter]

CascadeFilter[index_, fs_] :=
CascadeFilter[index, fs] =

Product[EarFilter[i,fs],
{i, 0, index}]

Since each term in this product is a second order function the cascade
filter quickly becomes very high order. It is tempting to wrap
ExpandNumerator and ExpandDenominator functions around the
Product in this defintion but the numerical errors involved become
large. For low index numbers we can display the results which look like:

LyonsCochlea.mma 32

CascadeFilter[1,16000]

 2
((-1.29244 + 6.58239 I) (1. - 0.888865 z) (1. - 1. z)

 2
 (0.927271 + 1.92587 z + z)) /

 2
 ((0.685543 + 1.63665 z + z)

 2
 (0.677314 + 1.64344 z + z))

The frequency responses at a number of different places in the cochlea
are shown below. In each case the maximum of the response is near the
center frequency of the last stage of the filter.

FreqResponse[CascadeFilter[1,16000],16000];

2000 4000 6000 8000
 f

-60

-40

-20

20

Response in dB

FreqResponse[CascadeFilter[4,16000],16000];

2000 4000 6000 8000
 f

-60

-40

-20

20

Response in dB

LyonsCochlea.mma 33

FreqResponse[CascadeFilter[10,16000],16000];

2000 4000 6000 8000
 f

-60

-40

-20

20

40

Response in dB

Note the response curves for later stages (higher indices) take a long
time to compute. The 30'th stage, for example, is actually the product of
31 second order sections or a 62nd order filter.

FreqResponse[CascadeFilter[30,16000],16000];

2000 4000 6000 8000
 f

-100

-80

-60

-40

-20

20

40

Response in dB

LyonsCochlea.mma 34

FreqResponse[CascadeFilter[60,16000],16000];

2000 4000 6000 8000
 f

-120

-100

-80

-60

-40

-20

20

Response in dB

FreqResponse[CascadeFilter[75,16000],16000];

2000 4000 6000 8000
 f

-100

-80

-60

-40

-20

Response in dB

We can evaluate the response of the fifth cascaded stage on the z-plane
using the expression below. Note that the first five stages includes the
first 10 poles plus 10 zeros with a higher q. The zeros lead to the sharp
dropoff.

LyonsCochlea.mma 35

Plot3D[Abs[FilterEval[CascadeFilter[5,16000],
x + I y]],

{x,-1,1}, {y,-1,1},
PlotPoints->64,
Lighting->True];

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

50

100

150

-1

-0.5

0

0.5

1

The next plot shows the total response for all 85 stages of the ear filter.
The zeros with their high q lead to a low response outside the unit circle.
This plot does not have enough resolution to show each of the poles. Thus
the four spikes are places where Mathematica happened to sample
especially close to a pole. The response is generally higher near DC
because the end of the cochlea is especially sensitive to low frequencies.

LyonsCochlea.mma 36

Plot3D[Abs[FilterEval[CascadeFilter[85,16000],
x + I y]],

{x,-1,1}, {y,-1,1},
PlotPoints->64,
Lighting->True];

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

2

4

-1

-0.5

0

0.5

1

LyonsCochlea.mma 37

DensityPlot[Abs[FilterEval[CascadeFilter[85,16000],
x + I y]],

{x,-1,1}, {y,-1,1},
PlotPoints->64];

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

LyonsCochlea.mma 38

 4 - The Automatic Gain Control (AGC)

 4.1 - The Simple AGC

The output of each filter stage is a bandpass representation of the
original audio signal. Each of these bandpass signals is passed through a
half-wave rectifier and then through four stages of AGC. The half-wave
rectifier models the detection nonlinearity of the hair cells, providing a
non-negative output that can be used to represent neural response. The
AGC stages described below depend on their inputs being rectified.

Each stage uses a different time constant to simulate the different
adaptation times in the ear. The cochlear model as currently
implemented uses four stages of AGC. Each AGC in turn reduces the level
of the channel, but with shorter time constants. The target values and
time constants that are currently used are:
First AGC: .0032 640ms
Second AGC: .0016 160ms
Third AGC: .0008 40ms
Fourth AGC: .0004 10ms
The significance of these figures will be explained shortly.

The half-wave rectification provides a crude energy measure in the
signal. Each AGC stage is implemented as a variable gain which tries to
keep the output of the AGC stage from exceeding a fixed level. In general
the gain will be between zero and one. To model the masking effects of
the ear, each stage of the AGC combines the bandpass outputs from the
current channel plus its nearest neighbors. Since all channels are
coupled one channel can affect all channels in the filter bank although
the effect will decay exponentially with distance.

The resulting AGC is shown below. The letter e in the drawing is the
same as the epsilon variable in the equations to follow. Likewise the
letter t is substituted for ta rget .

LyonsCochlea.mma 39

e/t

(1-e)/3

Z
-1X +

+

+

Left State Right StateInput (x)

1

+

-

Output
(y)

To right and
left channels

X

X

The purpose of the AGC is to attenuate the incoming signal so that on
average it remains below the target value. The loop with a feedback
gain of (1-epsilon)/3 (the state equation below) represents a simple
low pass filter with a time constant related to the epsi lon parameter.
A longer time constant means that the AGC takes longer to respond to the
input. The division by 3 in this expression in effect takes the average of
the left, right and current channels. The targe t parameter is used to
scale the input to the loop filter, y . In the long run the state equation
will track the value of the output of the AGC divided by the value of
target .

Assuming the left, middle and right inputs are equal, the following
equations define the response of the AGC.

Gain[i_] := 1 - State[i-1]

State[i_,y_,epsilon_,target_] :=
State[i,y,epsilon,target] =

epsilon*y/target + 3*State[i-1]*((1-epsilon)/3)

LyonsCochlea.mma 40

In the long term the output of the state loop (for constant input y in all
channels) will be equal to the output value divided by the target . This is
found using Mathematica by solving the following equation.

Solve[state == epsilon y/target + state(1 - epsilon),
state]

 y
{{state -> ------}} -----
 target

The output of the AGC is found by replacing the state in the gain
equation above with the steady state solution. Thus the steady state
output of the AGC is

Solve[y == x (1 - y / target),y]

 target x
{{y -> ----------}} ---------
 target + x

If the target is equal to one then the following curve shows the output
of the AGC versus input values. Note the limit of this function for large
input values is equal to target (one in this case.)

AGCFun[x_,target_] = N[target x / (target + x)];

Plot[AGCFun[x,1],{x,0,4}];

1 2 3 4

0.2

0.4

0.6

0.8

Limit[AGCFun[x,target],x->Infinity]

target

The output of the AGC scales. With a target of .1 the following transfer
function is measured.

LyonsCochlea.mma 41

Plot[AGCFun[x,.1],{x,0,1}];

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

Plotting the resoponse on a logarithmic axis we see the output of the
AGC approach the target value (.0004 this time.)

Plot[AGCFun[10^x,.0004],{x,-6,0},
AxesLabel->{"Log(10) of Input","AGC Output"}];

-6 -5 -4 -3 -2 -1
Log(10) of Input

0.0001

0.0002

0.0003

0.0004

AGC Output

Using actual targets described above for four cascaded stages, here is
the overall response (again on a logarithmic scale):

LyonsCochlea.mma 42

Plot[AGCFun[AGCFun[AGCFun[AGCFun[10^x,.0032],
 .0016],

.0008],
.0004],

{x,-6,0},
AxesLabel->{"Log(10) of Input","AGC Output"}];

-6 -5 -4 -3 -2 -1
Log(10) of Input

0.00005

0.0001

0.00015

0.0002

AGC Output

The impulse response of the AGC is uninteresting not only because the
AGC is a nonlinear filter but also because all impulses are passed
through unchanged. This is because the gain reduction occurs after the
impulse has ended. Instead we will demonstrate the behaviour of the
AGC using step inputs. The following function simulates the AGC
response for step inputs of arbitrary height (input). The result of this
function is a list of output values for the AGC at each step in time.

AGCResponse[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = N[(1-state)*input];

state = response[[i]]*eps + state*eps1,
{i,1,count+1}];

response];

This leads to the following behavior for small inputs (we will use a
target value of 1 and an epsi lon of .2 for most illustrations .)

LyonsCochlea.mma 43

PlotResponse[responselist_] :=
ListPlot[responselist,

PlotRange->{{0,Length[responselist]},
{-1,1+Max[responselist]}},

Axes->{0,0},
PlotJoined->True];

For a step input of height .5, a target value of 1 and an epsilon of .2
the following plot shows the first 15 outputs of this AGC.

PlotResponse[AGCResponse[.5,1,.2,15]];

2 4 6 8 10 12 14

-1

-0.5

0

0.5

1

1.5

For an input that is 10 times larger the response is shown below.

PlotResponse[AGCResponse[5,1,.2,15]];

2 4 6 8 10 12 14

-1

0

1

2

3

4

5

6

One problem with this AGC is that it initially overcorrects by reducing
the gain too much. For large enough inputs the gain can go negative,
leading to highly oscillatory behaviour.

LyonsCochlea.mma 44

PlotResponse[AGCResponse[8,1,.2,15]];

2 4 6 8 10 12 14
0

2

4

6

8

For even larger outputs this AGC is unstable.

PlotResponse[AGCResponse[10,1,.2,15]];

2 4 6 8 10 12 14
0

20

40

60

80

100

 4.2 - AGC Improvements

We will consider three different approaches to keep the AGC stable.
First, if the variable gain is followed by a half wave rectification then
this will prevent the state loop and the AGC stages that follow from
ever seeing a negative input. This is described by:

Hwr[x_] := If [x < 0, 0, x]

LyonsCochlea.mma 45

AGCResponse1[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = Hwr[(1-state)*input];

state = response[[i]]*eps + state*eps1,
{i,1,count+1}];

response]

Note that this AGC does not blow up like AGCResponse above but its
output is not very well behaved. For large enough inputs (and short
enough time constants) the output will eventually oscillate between zero
and a large number with a value between the input and the target.

PlotResponse[AGCResponse1[8,1,.2,20]];

2.5 5 7.5 10 12.5 15 17.5 20
0

2

4

6

8

PlotResponse[AGCResponse1[9,1,.2,20]];

2.5 5 7.5 10 12.5 15 17.5 20
0

2

4

6

8

10

LyonsCochlea.mma 46

PlotResponse[AGCResponse1[10,1,.2,20]];

2.5 5 7.5 10 12.5 15 17.5 20
0

2

4

6

8

10

A second approach is to limit the value of the state variable to be less
than one. This keeps the gain from ever going negative.

LimitValue[x_,value_] := If [x < value, x, value]

AGCResponse2[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = (1-state)*input;

state = LimitValue[response[[i]]*eps +
state*eps1,

1.0],
{i,1,count+1}];

response]

Again the response does not blow up, but it is still oscillatory.

LyonsCochlea.mma 47

PlotResponse[AGCResponse2[10,1,.2,20]];

2.5 5 7.5 10 12.5 15 17.5 20
0

2

4

6

8

10

Finally, a third approach is to use a soft limiter so that the gain
approaches but never quite reaches zero. In this case we have replaced
the state variable in the gain equation with state/(1+state) . This
function slowly approaches one as the state variable gets large and thus
prevents the AGC from shutting off completely.

AGCResponse3[input_, target_, epsilon_, count_] :=
Block[{response,state,eps,eps1},

state = 0;
eps = epsilon/target;
eps1 = 1 - epsilon;
response = Table[0,{i,1,count}];
Do [response[[i]] = (1-state/(1+state))*input;

state = response[[i]]*eps + state*eps1,
{i,1,count+1}];

response]

The response to this AGC is now more desireable, even for very large
inputs, though the output is no longer kept below target for large inputs.

LyonsCochlea.mma 48

PlotResponse[AGCResponse3[400,1,.2,20]];

2.5 5 7.5 10 12.5 15 17.5 20
0

100

200

300

400

LyonsCochlea.mma 49

 5 - Conclusions

This report has described the implementation of one of Richard Lyon's
models of the cochlea (or inner ear.) While we hope this model
accurately dscribes the total mechanical effects of the cochlea it makes
no attempt to accurately model each individual component. However, we
do not think this distinction is important when building speech
recognizers. Seperate models of the hair cells and the neurons will be
published later.

I wish to acknowledge the help of Richard Lyon, Steve Milne, Robert Hon
(all at Apple) and Steve Skienna (now at the State University of New
York, Stony Brook) for their help with this notebook. This model was
first defined and implemented while Richard Lyon was a member of the
Schlumberger Palo Alto Research Laboratory.

 6 - Usage

LyonsCochlea.mma 50

 7 - References

Lyon82 - R. F. Lyon, "A computational model of filtering, detection and
compression in the cochlea," in Proc. of the IEEE Int. Conf. Acoust.,
Speech, Signal Processing, Paris, France, May 1982.

Lyon85 - R. F. Lyon and N. Lauritzen, "Processing speech with the
multi-serial signal processor," in Proc. of the IEEE Int. Conf. Acoust.,
Speech, Signal Processing, Tampa, FL, Mar. 1985.

Lyon88a - R. F. Lyon and C. Mead, "An analog electronic cochlea," in IEEE
Transactions on Acoustics, Speech and Signal Processing, ASSP-36, pp.
1119-1134, July 1988.

Lyon88b - R. F. Lyon and C. Mead, "Cochlear Hydrodynamics Demystified,"
California Institute of Technology, Computer Science Department
Technical Report, 1988.

Oppenheim75 - Alan V. Oppenheim and Ronald W. Schafer, Digital Signal
Processing, Prentice Hall, Englewood Cliffs, NJ, 1975.

Pickels82 - J. O. Pickels, An Introduction to the Physiology of Hearing,
Academic Press, London, 1982.

Schroeder73 - M. R. Schroeder, "An integrable model for the basilar
membrane," JASA 53, pp. 429-434, 1973.

Wolfram88 - Stephen Wolfram, Mathematica™: A System for doing
Mathematics by Computer, Addison Wesley, Redwood City, CA, 1988.

Zweig76 - G. Zweig, R. Lipes and J. R. Pierce, "The cochlear compromise,"
JASA 59, pp. 975-982, 1976.

LyonsCochlea.mma 51

 Appendix - Filter Design
This appendix defines several Mathematica functions for signal
processing applications. Mostly we concentrate on first and second order
filters since the cochlear model is defined this way. In the first section
we will describe continuous time filters and then we will describe the
discrete time versions of these filters. In general the functions
provided in the continuous case and in the discrete case are similar. To
avoid confusion we use the word "Continuous" in the names of the
continuous domain filters.

 A.1 - Continuous Time Filter Design

 A.1.1 - Roots of the filters

Continuous time filters are described by giving the filter's response as a
function of complex frequency s . The following functions are used to
evaluate the complex response of a filter for a real frequency (in cycles
per second), its magnitude, phase and the response in decibels. A filter's
response function is evaluated along the imaginary axis by making the
substitution s->I 2 Pi f (or j 2 Pi f in conventional EE notation.) In
the expressions that immediately follow filter can be an arbitrary
function of the complex frequency s.

ContinuousFilterEval[filter_, f_] :=
filter /. s->f;

ContinuousFilterGain[filter_,f_] :=
ContinuousFilterEval[filter,I 2 Pi f];

ContinuousFilterMag[filter_,f_] :=
Abs[ContinuousFilterGain[filter,f]]

ContinuousFilterPhase[filter_,f_] :=
Arg[ContinuousFilterGain[filter,f]]

dB[x_] := 20 Log[10,x]

ContinuousFilterDb[filter_,f_] :=
dB[ContinuousFilterMag[filter,f]]

LyonsCochlea.mma 52

Finally, we use the following function to display the frequency response
of a continuous filter. (We start the plot at 1Hz to avoid any problems
with filters that have a zero at DC.)

ContinuousFreqResponse[filter_, maxf_] :=
Block[{response},

response = N[ContinuousFilterDb[filter,f]];
Plot[response,{f,1,maxf},
AxesLabel->{" Hz", "dB"},
PlotLabel->"Response"]];

The ContinuousAdjustGain function is used to modify a filter so that
it has unity gain at any desired frequency.

ContinuousAdjustGain[filter_,f_] :=
filter/ContinuousFilterGain[filter,f]

A second order filter is described by its resonant frequency (f) and its
quality factor (q). The 3dB bandwidth of the resulting filter is
approximately equal to f/q . The following function computes the roots of
a second order polynomial with a given center frequency (f in cycles per
second) and bandwidth (q). These roots will be used later in the
numerator of a filter function to make a notch in the frequency response
or in the denominator to make a peak.

ContinuousSecondOrderRoot[f_,q_] := -2 Pi f/q/2 +
I 2 Pi f Sqrt[1-1/(2q)^2]

For any given frequency these roots trace out a circle in the s -plane. For
very large q the roots are close to the imaginary axis. Thus as the
frequency response is measured along the imaginary axis the roots
closest to the imaginary axis (high q) will have a sharper response than
those that are farther away (low q) .

The plot below shows the location of one of the two roots of a second
order filter with a constant resonant frequency. Those roots that are
closest to the imaginary axis have a high q (2.2 in this case) while those
on the left near the real axis have a low q (.501) and thus a broad
response in the frequency domain.

The radius of this circle is 2 Pi times the resonant frequency (1000Hz).
As the resonance frequency is increased this plot will trace out a circle
with a larger radius. In all cases a filter with real coefficients will

LyonsCochlea.mma 53

have a second set of roots that are complex conjugates of the ones shown
below. Also for the filter to be stable all of the roots must be in the left
half of the complex plane.

-6000 -5000 -4000 -3000 -2000 -1000 0

Location of Roots vs. Q (Complex S-Plane)

1000

2000

3000

4000

5000

6000

We can create a second order filter using a pair of complex conjugate
roots as a function of the complex frequency s .

ContinuousSecondOrderFilter[f_,q_] :=
Expand[(s-ContinuousSecondOrderRoot[f,q])

(s-Conjugate[ContinuousSecondOrderRoot[f,q]])]//N

The maximum response of this filter is not at its "center" frequency but
at a slightly lower frequency given by.

ContinuousNaturalResonance[f_,q_] :=
f Sqrt[1 - 1/(2q^2)]

The approximate location of the 3dB points of the response curve are
defined by the following two equations.

Lower3DbPoint[f_,q_] :=
ContinuousNaturalResonance[f,q] - f/(2q)

Upper3DbPoint[f_,q_] :=
ContinuousNaturalResonance[f,q] + f/(2q)

LyonsCochlea.mma 54

 A.1.2 - Test Code

The following two equations verify that the two 3dB frequencies really
do solve the definining equations (See Hayt and Kemmerly, "Engineering
Circuit Analysis".)

Simplify[q(Upper3DbPoint[f,q]/f-f/Upper3DbPoint[f,q])]

 1 f
 f Sqrt[1 - ----] + --- --- --
 2 2 q
 f 2 q
(-(----------------------) + ----------------------) q --------------------- ---------------------
 1 f f
 f Sqrt[1 - ----] + --- --- --
 2 2 q
 2 q

Simplify[q(Lower3DbPoint[f,q]/f-f/Lower3DbPoint[f,q])]

 1 f
 f Sqrt[1 - ----] - --- --- --
 2 2 q
 f 2 q
(-(----------------------) + ----------------------) q --------------------- ---------------------
 1 f f
 f Sqrt[1 - ----] - --- --- --
 2 2 q
 2 q

Note that if we subtract the two 3dB frequencies we get the bandwidth
of the filter (in cycles per second) as a function of the center frequency
and q.

Simplify[Upper3DbPoint[f,q] - Lower3DbPoint[f,q]]

f
-
q

ContinuousSecondOrderRoot[1000,10]

-100 Pi + 100 I Sqrt[399] Pi

N[Abs[%]/ (2 Pi)]

1000.

LyonsCochlea.mma 55

 A.1.3 - Continuous Filter Design

Now we can actually create a filter. A bandpass filter (or resonator) is
defined by placing the roots of a second order polynomial in the
denominator. This time we normalize the gain of the filter so at its peak
(at the NaturalResonance frequency) it has unity gain.

MakeContinuousResonance[f_,q_] :=
ContinuousAdjustGain[1/ContinuousSecondOrderFilter[f,q],

ContinuousNaturalResonance[f,q]]

A typical bandpass filter (or resonator) with a center frequency of
1000Hz and a q of 10 looks like this.

MakeContinuousResonance[1000,10]//N

 6
 197392. + 3.93796 10 I

 7 2
3.94784 10 + 628.319 s + s

The gain of this bandpass filter is shown below.

ContinuousFreqResponse[MakeContinuousResonance[1000,10],
2000];

500 1000 1500 2000
 Hz

Response

-30

-25

-20

-15

-10

-5

dB

Finally, we can also show how the phase of this bandpass filter shifts as
the frequency passes through the resonant frequency. The phase is equal
to zero near the center frequency since we have normalized the gain of
the filter so that it is equal to one at the resonance frequency.

LyonsCochlea.mma 56

Plot[Release[ContinuousFilterPhase[
MakeContinuousResonance[1000,10],f]],

{f,0,2000}];

500 1000 1500 2000

-1.5

-1

-0.5

0.5

1

1.5

The plot below shows the frequency response of second order bandpass
filters with a center frequency of 1000Hz as the quality factor (q) is
varied. The flattest curve is the frequency response of a filter with a q
of .7 while the narrowest (sharpest) filter has a q of 10.

LyonsCochlea.mma 57

500 1000 1500 2000
 Hz

Response

-30

-25

-20

-15

-10

-5

dB

Likewise we can create a second order filter with a notch in the
frequency response. In this case all of the roots are in the numerator so
there is a zero (or a notch) in the frequency response. We normalize the
filter's gain so that at DC there is unity gain.

MakeContinuousAntiResonance[f_,q_] :=
ContinuousAdjustGain[ContinuousSecondOrderFilter[f,q],

0]

A filter with a notch centered at 1000 Hz and with a q of 10 is described
by the following equation.

MakeContinuousAntiResonance[1000,10]

 -8 7 2
2.53303 10 (3.94784 10 + 628.319 s + s)

LyonsCochlea.mma 58

The response of this filter in the frequency domain is shown below.

ContinuousFreqResponse[
MakeContinuousAntiResonance[1000,10],2000];

500 1000 1500 2000
 Hz

Response

-20

-15

-10

-5

5

10

dB

 A.1.4 - More Test Code

The following function prints some interesting information about a filter
function.

FilterCheck[filter_,f_,q_] :=
Block[{center,fd,f1,f2,g1,g2},

f1 = N[Lower3DbPoint[f,q]];
f2 = N[Upper3DbPoint[f,q]];
fd = N[ContinuousNaturalResonance[f,q]];
g = N[ContinuousFilterMag[filter,fd]];
g1 = N[ContinuousFilterMag[filter,f1]];
g2 = N[ContinuousFilterMag[filter,f2]];
Print["Gain at f1=",f1," is ",g1];
Print[" or ",dB[g1/g],"dB"];
Print["Gain at fd=",fd," is ",g];
Print["Gain at f2=",f2," is ",g2];
Print[" or ",dB[g2/g],"dB"];
]

FilterCheck[MakeContinuousResonance[1000,10],1000,10]

Gain at f1=947.497 is 0.71646
 or -2.89616dB
Gain at fd=997.497 is 1.
Gain at f2=1047.5 is 0.698751
 or -3.11355dB

LyonsCochlea.mma 59

Note that the calculation of the 3dB points is only approximate. As the q
gets larger the approximation is better.

FilterCheck[MakeContinuousResonance[1000,100],1000,100]

Gain at f1=994.975 is 0.707996
 or -2.99939dB
Gain at fd=999.975 is 1.
Gain at f2=1004.97 is 0.706228
 or -3.0211dB

I've written the following function to look for the 3dB points. I couldn't
figure out any way to make Mathematica solve the equation for me.

FilterSearch[f_,v_,l_,h_] := Block[{vl,vm,vh,m},
m = (l + h) / 2;
If [Abs[m-l] < m/1000000,

Return[N[m]]];
vl = N[ContinuousFilterMag[f,l]];
vm = N[ContinuousFilterMag[f,(l+h)/2]];
vh = N[ContinuousFilterMag[f,h]];
If [Between[vl,v,vm],

FilterSearch[f,v,l,m],
If [Between [vm, v, vh],

FilterSearch[f,v,m,h],
Print["Error vl=",vl," vm=",vm," vh=",vh]
]

]
]

Between[l_,m_,h_] := (m >= l && m < h) ||
(m < l && m >= h)

Get a simple resonator with center frequency 1000 and a q of 2.

a=MakeContinuousResonance[1000,2]//N

 6 7
 4.9348 10 + 1.84643 10 I

 7 2
3.94784 10 + 3141.59 s + s

First look for the upper 3dB point. Note that it is few percent lower in
frequency than the equations predict.

LyonsCochlea.mma 60

f2=FilterSearch[a,N[Sqrt[2]/2],1000,1200]

1165.81

Upper3DbPoint[1000,2]//N

1185.41

Likewise the lower 3dB point is also off by a bit.

f1=FilterSearch[a,N[Sqrt[2]/2],500,1000]

625.202

Lower3DbPoint[1000,2]//N

685.414

 A.1.5 - Playing Around

We can now combine notch and resonance filters to get more interesting
responses. The following combination of a resonance with a q of 2 at
1000Hz and a notch with a q of 5 at 1100Hz is similar to the
cascade-only ear filters described in the main part of this report.

MakeContinuousResonance[1000,2] *
MakeContinuousAntiResonance[1100,5]//N

 7 2
(0.103306 + 0.386535 I) (4.77689 10 + 1382.3 s + s)

 7 2
 3.94784 10 + 3141.59 s + s

ContinuousFreqResponse[MakeContinuousResonance[1000,2]*
MakeContinuousAntiResonance[1100,5]//N,2000];

500 1000 1500 2000
 Hz

Response

-16

-14

-12

-10

-6

dB

LyonsCochlea.mma 61

A second filter is shown below. We have combined a broad notch with a
narrow resonance to give a bandpass filter.

MakeContinuousResonance[1000,5] *
MakeContinuousAntiResonance[1000,2]//N

 7 2
(0.02 + 0.19799 I) (3.94784 10 + 3141.59 s + s)

 7 2
 3.94784 10 + 1256.64 s + s

ContinuousFreqResponse[MakeContinuousResonance[1000,5]*
MakeContinuousAntiResonance[1000,2]//N,2000];

500 1000 1500 2000
 Hz

Response

-14

-12

-10

-6

dB

We can gain more insight about this filter by examining the response in
the complex s-plane. This is shown below with the white spots
representing the location of the resonance (or greatest response) and the
black representing the zeros or lowest response.

gg[x_] := Abs[(MakeContinuousResonance[1000,5] *
MakeContinuousAntiResonance[1000,2])

/.s->x]

LyonsCochlea.mma 62

DensityPlot[gg[x + I y],{x,-8000,8000},{y,-8000,8000},
PlotPoints->33];

-7500 -5000 -2500 0 2500 5000 7500

-7500

-5000

-2500

0

2500

5000

7500

 A.1.6 - Usage

 A.2 - Discrete Time Filter Design

This section of the notebook describes how to calculate first and second
order digital filters. Discrete time filters are described by their
response in the z-domain. This section first describes some simple
routines for describing polynomials in the z-domain and describes how to
design first and second order filters. The frequency response and
impulse response of these filters are then shown.

LyonsCochlea.mma 63

 A.2.1 - Polynomial Evaluation Utilities

This section of the report defines some Mathematica functions to make
it easier to work with filter functions in the Z-domain. These functions
allow us to define a new polynomial given a list of its coefficients
(MakePoly) , evaluate a polynomial (FilterEval), and find the zeros and
roots of ratios of polynomials (RationalZeros and RationalPoles).
These function will be used in the next section when the ear filters are
defined.

In this notebook polynomials in z will be represented as lists of
polynomial coefficients. The coefficients of a polynomial are listed
from the initial constant to the coefficient multiplying the highest
power. All coefficients past the end of the list are defined to be zero.
The PolyCoeff function is used to pick out the n 'th coefficient of a
polynomial.

PolyCoeff[coeffs_, n_] :=
If [n < Length[coeffs],

coeffs[[n+1]],
0]

Given a list of coefficients, MakePoly returns a Mathematica
expression that represents the polynomial. The use of z for the
polynomial variable is arbitrary and was chosen to make the polynomials
look good when printed.

MakePoly[coeffs_List] :=
Block[{i},

PolyCoeff[coeffs,0] +
Sum[PolyCoeff[coeffs,i] z^i,

{ i, 1, Length[coeffs]}]]

FilterEval will return the value of a polynomial at a given point by
substituting the desired value into the polynomial. Note, this function
will work on all z-transforms.

FilterEval[poly_, x_] := (poly)/. z->x

For example the following is a third order polynomial and the result of
evaluating it at z=1 .

LyonsCochlea.mma 64

poly = MakePoly[{1,4,2,1}]

 2 3
1 + 4 z + 2 z + z

FilterEval[poly,1]

8

Likewise we can define a rational function by writing the ratio of two
MakePoly 's and then evaluate it using FilterEval .

rat = MakePoly[{1,-1,-1,1}] / MakePoly[{3,2,1}]

 2 3
1 - z - z + z

 2
 3 + 2 z + z

FilterEval[rat,2]

3

11

Finally we define two functions, RationalPoles and RationalZeros ,
that return a list of the poles and zeros of a rational function. The
function GetSolution is used to pick apart the stylized expression that
Mathematica uses to show the roots of an equation.

GetSolution[x_] :=
If [x == {},

{},
x[[1]][[2]]]

RationalPoles[rat_] :=
Block[{roots},

roots = Solve[FilterEval[Denominator[rat],x] == 0,x];
Map[GetSolution, roots]]

RationalZeros[rat_] :=
Block[{roots},

roots = Solve[FilterEval[Numerator[rat],x] == 0,x];
Map[GetSolution, roots]]

Using the previously defined rational polynomial (rat), we can find the
poles and zeros of this filter:

LyonsCochlea.mma 65

RationalPoles[rat]

 -2 - 2 I Sqrt[2] -2 + 2 I Sqrt[2]
{----------------, ----------------} --------------- ---------------
 2 2

RationalZeros[rat]

{-1, 1, 1}

 A.2.2 - The Filter Design Equations

This section describes some general first and second order filter design
functions. We will use these functions later to define the filters used in
the ear model.

A one pole (first-order lowpass) filter is defined by the following
transfer function (in the z domain):

1 / MakePoly[{-epsilon,1}]

 1

-epsilon + z

This filter will have a time constant of tau if epsi lon is given by

EpsilonFromTauFS[tau_, fs_] := E^(-1 / tau / fs)

Note that epsilon is a function of not only the time constant (tau) but
also the sampling frequency (fs) of the digital filter. A first-order
filter with time constant tau is given by (high pass in this case):

FirstOrderFromTau[tau_, fs_] :=
MakePoly[{-EpsilonFromTauFS[tau, fs],1}]

A first order filter with a time constant (tau) of 1ms is given by

fo = FirstOrderFromTau[0.001, 16000]

-0.939413 + z

LyonsCochlea.mma 66

ListPlot[FindImpulseResponse[1/fo,32]];

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Likewise, a first-order filter with a corner frequency of f is described
by :

FirstOrderFromCorner[f_, fs_] :=
MakePoly[{1,-E^(-2 Pi f / fs)}]

A second order filter is defined by its center frequency (f), quality
factor (q) and sampling frequency (fs):

SecondOrderFromCenterQ[f_, q_, fs_] :=
Block[{cft, rho, theta},

cft := f/fs;
rho := E^(-Pi cft / q);
theta := 2 Pi cft Sqrt[1 - 1/(4 q ^ 2)];
MakePoly[{rho^2, -2 rho Cos[theta], 1}]]

The function Fil terGain evaluates the filter transfer function (z
transform) at the frequency f by making the substitution
 z -> E ^ (I 2 Pi f / fs)
where fs is the sampling interval.

FilterGain[filter_,f_,fs_] :=
FilterEval[filter,E^(I 2 Pi f / fs)]

Likewise the functions Fil terMag , FilterPhase and FilterDb compute
the magnitude, phase and gain in dB of a digital filter.

FilterMag[filter_,f_,fs_] :=
Abs[FilterGain[filter,f,fs]]

FilterPhase[filter_,f_,fs_] :=
Arg[FilterGain[filter,f,fs]]

LyonsCochlea.mma 67

FilterDb[filter_,f_,fs_] :=
Db[FilterMag[filter,f,fs]]

The function AdjustGain adjusts the gain of a filter so that it has unit
gain at any desired frequency.

AdjustGain[filter_,f_,fs_] :=
filter/FilterGain[filter,f,fs]

We define the MakeFil ter function to design a filter with a given
feedback (poles) and feedforward (zeros) response. The resulting filter
is just the ratio of the two polynomials. In addition a frequency and
gain are specified so that the resulting filter can be normalized to have
any desired gain at a specified frequency .

MakeFilter[forward_, feedback_, fs_, f_, gain_] :=
gain AdjustGain[forward/feedback,f,fs]

The frequency response of a filter can be plotted in Mathematica using
the following function.

FreqResponse[coeffs_, fs_] :=
Block[{function,f},
function = N[dB[Abs[FilterGain[coeffs,f,fs]]]];
Plot[function,

{f,1,fs/2-fs/1000},
AxesLabel->{" f","Response in dB"}]]

For example we can define a first order low pass filter with a 3dB point
at 1000Hz (the frequency response would look better with a logarithmic
frequency scale):

first = MakeFilter[1,FirstOrderFromCorner[1000,16000],
16000,0,1]//N

 0.324768

1. - 0.675232 z

LyonsCochlea.mma 68

FreqResponse[first,16000];

2000 4000 6000 8000
 f

-14

-12

-10

-8

-6

-4

-2

Response in dB

The gain at the corner frequency is given by the following Mathematica
expression:

20 Log[10, Abs[N[FilterGain[first,1000,16000]]]]

-2.95485

A second order bandpass filter with center frequency 3000 and a Q of 10
is given by

second = MakeFilter[1,
SecondOrderFromCenterQ[3000,10,16000],
16000,3000,1]//N

 -0.0953624 + 0.0380781 I

 2
0.888865 - 0.724151 z + z

FreqResponse[second,16000];

2000 4000 6000 8000
 f

-25

-20

-15

-10

-5

Response in dB

LyonsCochlea.mma 69

A less peaky response is possible using a lower Q .

second = MakeFilter[1,
SecondOrderFromCenterQ[3000,2,16000],
16000,3000,1]//N

 -0.389971 + 0.133203 I

 2
0.554855 - 0.621189 z + z

FreqResponse[second,16000];

2000 4000 6000 8000
 f

-14

-12

-10

-8

-6

-4

-2

Response in dB

The poles and zeros in the complex z-plane of a stable discrete time
filter are inside the unit circle. In general the resonant frequency of the
root is proportional to the angle of the root from the positive real axis.
Roots that are close to the unit circle will have a high q . The plot below
shows the roots of a second order section with resonant frequency of
1000Hz and a sampling frequency of 16000Hz as the q varies from .5 to
2.2.

LyonsCochlea.mma 70

ListPlot[Map[{Re[#],Im[#]}&,
Flatten[Table[

RationalZeros[
N[SecondOrderFromCenterQ[1000,q,16000]]],

{q,.501,2.2,.1}]]],
PlotRange->{{-1,1},{-1,1}},
AspectRatio->1,
PlotLabel->"Location of Roots vs. Q (Complex Z-Plane)"];

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

Location of Roots vs. Q (Complex Z-Plane)

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

The following plot shows the frequency response of a number of second
order discrete bandpass filters with a center frequency of 1000Hz and a
sampling frequency of 16000. The flattest curve is the frequency
response of a second order bandpass filter with a q of .7 while the
sharpest (narrowest) curve is the frequency response when the q is 10.

LyonsCochlea.mma 71

2000 4000 6000 8000
 f

-40

-30

-20

-10

Response in dB

 A.2.3 - Time Domain Implementation

The following signal flow graph shows how the filter
 A0 + A1/z + A2/z^2
 -
 1 + B1/z + B2/z^2
can be computed. Each stage of the ear cascade model discussed in this
report is implemented this way.

LyonsCochlea.mma 72

Z
-1

Z
-1

 +

 +

 +

B1

B2

A 1

A 0

A
2

Input Output

-

-

X

X

X

X

X

The following function can be used only to evaluate the inverse
z-transform of a ratio of two polynomials in z.

LyonsCochlea.mma 73

FindImpulseResponse[filter_,maxn_] :=
Block[{num, denom, numorder, denomorder, response,

order, inverse, new},
new = Expand[Numerator[filter]] /

Expand[Denominator[filter]];
order = Abs[Exponent[Numerator[new],z]-

Exponent[Denominator[new],z]];
inverse = Expand[new/.z->1/z];
num = Expand[Numerator[inverse]];
denom = Expand[Denominator[inverse]];
inverse = Simplify[Expand[z^order num]/

Expand[z^order denom]];
num = Expand[Numerator[inverse]];
denom = Expand[Denominator[inverse]];
numorder = Exponent[num,z];
denomorder = Exponent[denom,z];
response = Table[0,{maxn}];
Do [response[[i+1]] =

(Coefficient[num,z,i] -
 Sum[Coefficient[denom,z,j] *

response[[i-j+1]],
{j,1,Min[i,denomorder]}])/

 Coefficient[denom,z,0],
{i, 0, maxn-1}];

Return[response]]

This is the impulse response for a simple low pass filter.

FindImpulseResponse[z/(z-.9),10]

{1, 0.9, 0.81, 0.729, 0.6561, 0.59049, 0.531441,

 0.478297, 0.430467, 0.38742}

 A.2.4 - Test Code

The following examples are from page 35 of [Rabiner1975]

Simplify[Table[-a a^i/(b-a) + b b^i/(b-a),{i,0,4}]]

 14 14
{1, (3.1658 10 - 1.82236 10 I) /

 7 2
 ((3.94784 10 + 3141.59 s + s)

 6 7 7

LyonsCochlea.mma 74

 (-4.9348 10 - 1.84643 10 I + 3.94784 10 b +

 2
 3141.59 b s + b s)) +

 2
 b
 --------------------------------, -------------------------------
 6 7
 -4.9348 10 - 1.84643 10 I
 b + ---------------------------- ---------------------------
 7 2
 3.94784 10 + 3141.59 s + s

 21 21
 (4.92712 10 + 4.94613 10 I) /

 7 2 2
 ((3.94784 10 + 3141.59 s + s)

 6 7 7
 (-4.9348 10 - 1.84643 10 I + 3.94784 10 b +

 2
 3141.59 b s + b s)) +

 3
 b
 --------------------------------, -------------------------------
 6 7
 -4.9348 10 - 1.84643 10 I
 b + ---------------------------- ---------------------------
 7 2
 3.94784 10 + 3141.59 s + s

 28 29
 (-6.70128 10 + 1.15384 10 I) /

 7 2 3
 ((3.94784 10 + 3141.59 s + s)

 6 7 7
 (-4.9348 10 - 1.84643 10 I + 3.94784 10 b +

 2
 3141.59 b s + b s)) +

LyonsCochlea.mma 75

 4
 b
 --------------------------------, -------------------------------
 6 7
 -4.9348 10 - 1.84643 10 I
 b + ---------------------------- ---------------------------
 7 2
 3.94784 10 + 3141.59 s + s

 36 35
 (2.46119 10 + 6.67948 10 I) /

 7 2 4
 ((3.94784 10 + 3141.59 s + s)

 6 7 7
 (4.9348 10 + 1.84643 10 I - 3.94784 10 b -

 2
 3141.59 b s - b s)) +

 5
 b
 --------------------------------} -------------------------------
 6 7
 -4.9348 10 - 1.84643 10 I
 b + ---------------------------- ---------------------------
 7 2
 3.94784 10 + 3141.59 s + s

Simplify[FindImpulseResponse[1/(1-a z)/(1-b z),5]]

LyonsCochlea.mma 76

 -8 -8
{0, 0, ((1.35095 10 - 5.05479 10 I)

 7 2
 (3.94784 10 + 3141.59 s + s)) / b,

 -15 -15
 ((-2.37258 10 - 1.36575 10 I)

 7 2
 (3.94784 10 + 3141.59 s + s)

 6 7 7
 (4.9348 10 + 1.84643 10 I + 3.94784 10 b +

 2 2
 3141.59 b s + b s)) / b ,

 -8 -8
 ((1.35095 10 - 5.05479 10 I)

 7 2
 (3.94784 10 + 3141.59 s + s)

 -8 -8
 (((-1.35095 10 + 5.05479 10 I)

 7 2
 (3.94784 10 + 3141.59 s + s)) / b +

 -15 -15
 ((-2.37258 10 - 1.36575 10 I)

 6 7
 Power[4.9348 10 + 1.84643 10 I +

 7 2
 3.94784 10 b + 3141.59 b s + b s , 2]) /

 2
 b)) / b}

The first example is the impulse response for a perfect oscillator with a
pair of poles on the unit circle.

LyonsCochlea.mma 77

ListPlot[FindImpulseResponse[1/(1-1.99z+z*z),100],
PlotJoined->True];

20 40 60 80 100

-10

-5

5

10

A second order filter with finite q will have an impulse response that is
a decaying sinusoid. The following example shows the impulse response
to a second order filter with a center frequency of 1000Hz, sampling
frequency of 8000Hz and a q of 10.

filter = SecondOrderFromCenterQ[1000,10,8000] //N

 2
0.924465 - 1.36109 z + z

RationalPoles[1/filter]

{0.680544 - 0.679209 I, 0.680544 + 0.679209 I}

ListPlot[FindImpulseResponse[1/filter,50],
PlotJoined->True];

10 20 30 40 50

-1

-0.5

0.5

1

LyonsCochlea.mma 78

 A.2.5 - Usage

LyonsCochlea.mma 79

