
Measuring Texture and Color in
Images

Avinash Kak

Purdue University

December 28, 2022

8:24pm

An RVL Tutorial Presentation

Originally presented in Fall 2016; Code examples updated in January 2018;

Corrections in November 2020; Deep Learning based material added in October 2022

©2022 Avinash Kak, Purdue University

CONTENTS

Section Title Page

1 Does the World Really Need Yet Another Tutorial? 4

2 Characterizing Image Textures 6

3 Characterizing a Texture with a Gray Level 10
Co-Occurrence Matrix (GLCM)

3.1 Summary of GLCM Properties 20
3.2 Deriving Texture Measures from GLCM 22
3.3 Python Code for Experimenting with GLCM 27

4 Characterizing Image Textures with Local 31
Binary Pattern (LBP) Histograms

4.1 Characterizing a Local Inter-Pixel Grayscale 33
Variation with a Contrast-Change-Invariant
Binary Pattern

4.2 Generating Rotation-Invariant Representations 39
from Local Binary Patterns

4.3 Encoding the minIntVal Forms of LBP 42
4.4 Python Code for Experimenting with LBP 51

5 Characterizing Image Textures with a Gabor 55
Filter Family

5.1 A Brief Review of 2D Fourier Transform 59
5.2 The Gabor Filter Operator 61
5.3 Python Code for Experimenting with Gabor 74

Filter Banks

6 Deep Learning and Image Textures 79

6.1 Gram Matrics for Texture Characterization in Neural Networks 81
6.2 Texture Characterization with Channel Normalization Parameters 90

continued on next page...

2

CONTENTS (contd.)

Section Title Page

7 Dealing with Color in Images 98

7.1 What Makes Learning About Color So Frustrating 101
7.2 Our Trichromatic Vision and the RGB Model 108
7.3 Color Spaces 114

7.3.1 The Chromaticity Space 115
7.3.2 The RGB Space 124
7.3.3 The HSI Space 127
7.3.4 HSV and HSL Spaces 136
7.3.5 Opponent Color Spaces 141
7.3.6 The CMY Space 144

7.4 The Great Difficulty of Measuring the True 148
Color of an Object Surface

3

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

1: Does the World Really Need Yet Another
Tutorial?

• The main reason for this tutorial is for it to serve as a handout

for Lectures 16 and 17 of my class on Computer Vision at

Purdue University. Here is a link to the course website so that

you can see for yourself where this lecture belongs in an overall

organization of the course:

https://engineering.purdue.edu/kak/ComputerVision

• All of the code examples you see in this tutorial can be

downloaded as a gzipped tar archive from

https://engineering.purdue.edu/kak/distTextureAndColor/CodeForTextureAndColorTutorial.tar.gz

• PLEASE HELP! Since this still is an early draft of this

tutorial (as of October 2022), I am sure it contains typos,

inadvertently skipped words (the

fingers-on-a-keyboard-not-keeping-up-with-the-brain

phenomenon), poor phrasing (the dumb-ass-attack

phenomenon), spelling errors (the we-are-losing-our-ability-to-

spell-correctly-because-of-auto-spell-checkers phenomenon), and

so on. Please let me know (email: kak@purdue.edu) if you see

any such defects in this document. If you do send email, please

4

https://engineering.purdue.edu/kak/ComputerVision
https://engineering.purdue.edu/kak/distTextureAndColor/CodeForTextureAndColorTutorial.tar.gz

Texture and Color An RVL Tutorial by Avi Kak

be sure to place the string “Texture and Color” in the Subject

line to get past my pretty strong spam filter.

• About the Deep Learning based additions to the tutorial in Fall

2022: Image textures are important to a large number of

deep-learning based frameworks for image classification,

detection, tracking, style transfer, synthetic image generation,

etc. While many of these applications deal with the textures

implicitly, there is one where you need to be explicitly aware of

how to characterize the textures and that’s the application of

style transfer. This tutorial includes a new section that discusses

how textures have been handled so far in style transfer.

5

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

2: Characterizing Image Textures

• Methods used to characterize image textures fall generally in

two categories: statistical and structural. The statistical

methods try to figure out how some image property related to

its texture may be distributed in the image and then derive

numerical texture measures from the computed distributions.

• Structural methods generally investigate the different kinds of

periodicities in an image and characterize a texture with the

relative spectral energy at different periodicities. [Some readers may argue

that “structural” is not the best way to describe what is basically a periodicity analysis of the grayscale (and

color) changes. However, as you will see in Section 5, this periodicity analysis is localized to the immediate

neighborhoods of the individual pixels. To the extent these within-neighborhood periodicity properties can be

used to recognize texture differences between the different regions in an image, I think the word “structural”

applies.]

• To elaborate further on the statistical methods, various

attempts to characterize image textures over the years are based

mostly on extracting the first- and the second-order properties

of grayscale and color levels. [By first order, I mean the properties that can be derived

directly from the individual pixels — that is, without any cross-comparisons between the pixels. The

first-order properties are typically based on the means, the variances, etc., of the pixels. The second-order

properties involve comparing two pixels at the same time. The second-order properties, therefore, investigate

6

Texture and Color An RVL Tutorial by Avi Kak

how one pixel at some reference location relates statistically to another pixel at a location displaced from the

reference location. Some researchers have also looked at characterizing textures with third and higher order

properties. These would involve investigating the grayscale and color distributions at three or more pixels

whose coordinates must occupy specific positions vis-a-vis one another. Third and higher order texture

characterizations have been found to be too complex for a practical characterization of textures.]

• In what follows, GLCM and LBP are examples of texture

characterizations based on their second-order statistical

properties. On the other hand, the technique based on Gabor

filters is an example of the structural approach.

• Any numerical characterization of image textures must possess

some essential properties in order to be useful in practical

applications:

– To the maximum extent possible, it must be invariant to

changes in image contrast that may be produced by

changing or uneven illumination of a scene — assuming that

the texture remains more or less the same as perceived by a

human. At the least, the numerical characterization must be

invariant to monotonic transformation of the grayscale.

– To the maximum extent possible, it must be invariant to

in-plane rotations of the image.

– It must lend itself to fast computation

7

Texture and Color An RVL Tutorial by Avi Kak

• The first invariance is important because one can certainly

expect that the illumination conditions under which the

training data was collected for a machine learning algorithm

may not be the same as the conditions under which the test

data was recorded.

• The same goes for the second invariance: It’s highly likely that

the orientation of the texture you used for training a machine

learning algorithm would not be identical to the orientations of

the same texture in the test images.

• Some researchers have suggested histogram-equalization as an

image normalization tool before subjecting the images to the

extraction of texture based properties. Although histogram

equalization is a powerful tool for improving the quality of

low-contrast images, its usefulness as a normalizer of images

prior to texture characterization is open to question. In general,

histogram equalization results in a nonlinear transformation of

the grayscale and, again in general, such nonlinear

transformations can alter the texture in the original images.

Additionally, while histogram equalization may balance out the

contrast variations in a single image, it does not normalize out

image-to-image variations.

• So it is best if the method used for characterizing a texture is

mostly independent of the macro-level variations in the contrast

8

Texture and Color An RVL Tutorial by Avi Kak

in each image. That is, we want methods that extract texture

related information from just the changes in the grayscale at the

pixels and their immediate neighborhoods.

9

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

3: Characterizing a Texture with a Gray
Level Co-Occurrence Matrix (GLCM)

• The basic idea of GLCM is to estimate the joint probability

distribution P [x1, x2] for the grayscale values in an image,

where x1 is the grayscale value at any randomly selected pixel

in the image and x2 the grayscale value at another pixel that is

at a specific vector distance d from the first pixel. [You are surely

familiar with the histogram P [x] of grayscale values in an image: P [x] is the

probability that the grayscale value at a randomly chosen pixel in the image will equal

x. That is, if you count the number of pixels at the grayscale value x and divide that

count by the total number of pixels, you get P [x]. Now extend that concept to

examining the grayscale values at two different pixels that are separated by a

displacement vector d. If you count the number of pairs of pixels that are d apart,

with one pixel at grayscale value x1 and the other at grayscale value x2, and you

normalize this count by the total number of pairs of pixels that are d apart, you’ll get

P [x1, x2].] After you have estimated P [x1, x2], the texture can

be characterized by the shape of this joint distribution.

• Therefore, thinking about the grayscale value at two different

pixels that are separated by a fixed displacement vector d is a

good place to start for understanding the GLCM approach to

texture characterization.

10

Texture and Color An RVL Tutorial by Avi Kak

• Let’s say we raster scan an image left to right and top to

bottom and we examine the grayscale value at each pixel that

we encounter and at another pixel that at a displacement d with

respect to the first pixel. [Assume that as we are scanning an image, we are

currently at the pixel coordinates (i, j). As far as the displacement d is concerned, it

could be as simple as pointing to the next pixel, the one at (i, j + 1), or, as simple as

pointing to the pixel that is one column to the right and one row below. For the first

case, d = (0, 1) and for the second case d = (1, 1).]

• As an image is being scanned, the (m,n)-th element of the

GLCM matrix records the number of times we have seen the

following event: the grayscale value at the current pixel is m

while the grayscale value at the d-displaced pixel is n.

• To illustrate with a toy example, consider the following 4× 4

image with pixels whose grayscale values come from the set

{0, 1, 2}:

2 0 1 1

0 1 2 0

1 1 1 2

0 0 1 1

• And let us assume a displacement vector of

d = (1, 1) (1)

11

Texture and Color An RVL Tutorial by Avi Kak

As we scan the image row by row by visiting each pixel from

top left to bottom right, if m is the grayscale value at the

current pixel and n the grayscale value at the pixel one position

to the right and one row below, we increment glcm[m][n] by 1.

Scanning the 4× 4 array shown above, we get the following

3× 3 GLCM matrix:

Image GLCM

-----------> displaced pixel

| gray levels

|

2 0 1 1 | 0 1 1

0 1 2 0 => | 2 3 0

1 1 1 2 | 0 1 1

0 0 1 1 |

V

reference pixel

gray levels

NOTE: The GLCM matrix is of size 3x3 because we

have ONLY 3 gray levels which are {0,1,2)

• Looking at the first row, what this matrix tells us is that if the

reference pixel has grayscale value 0, it is never the case that

the displaced pixel also has grayscale value 0. And that there is

only one occurrence of the reference pixel having grayscale value

0 while the displaced pixel has grayscale value of 1. And that

there is only one occurrence of the reference pixel being of

grayscale value 0, while the displaced pixel has grayscale value

of 2.

12

Texture and Color An RVL Tutorial by Avi Kak

• Looking at the second row of the GLCM matrix shown above,

there are two occurrences of the reference pixel being 1 while

the displaced pixel has grayscale value 0. And that are three

occurrences when both the reference and the displaced pixels

have grayscale value of 1. And so on.

• As you would expect, what you get is an asymmetric matrix as

shown above. The matrix is asymmetric because, in general, the

number of times the grayscale value at the reference pixel is m

while the grayscale value at the displaced pixel is n will not be

the same for the opposite order of the gray levels at the two

pixels.

• Nonetheless, as you will see later, in general one is interested

primarily in the fact that two grayscale values, m and n, are

associated together because they occur at the two ends of a

displacement vector, and one does not want to be concerned

with the order of appearance of these two gray levels. When

that is the case, it makes sense to create a symmetric GLCM

matrix. This can easily be done by the simple expedient of

incrementing the element glcm(n,m) when we increment

glcm(m,n). For the above example, this yields the result:

0 3 1

3 6 1

1 1 2

13

Texture and Color An RVL Tutorial by Avi Kak

• Here are some interesting observations about GLCM matrices:

If you sum the diagonal elements of a normalized GLCM

matrix, you get the probability that two pixels in the image

that are separate by the displacement vector d will have

identical grayscale values. Along the same lines, if you sum any

non-diagonal entries in the normalized GLCM matrix that are

on a line parallel to the diagonal, you get the probability of

finding the grayscale difference at any two pixels separated by d

corresponding to the line on which the GLCM elements lie.

• For the example shown above, with a probability of 8/18, two

pixels separated by the displacement d = (1, 1) will have

identical grayscale values. Similarly, again with a probability of

8/18, two pixels separated by the same d will have their

grayscale difference equal to 1. By the same token, with a

probability of 2/18, two pixels separated by the same d will

have their grayscale difference equal to 2. [That works out to a level

difference distribution of [8/18, 8/18, 2/18]. over the three possible values {0, 1, 2} for the gray

level differences.]

• The Python script in Section 3.3 allows you to experiment with

different toy textures in images of arbitrary size and with an

arbitrary number of grayscale values. For example, if you set

the texture type to vertical, the image size to 8 (for an 8× 8

array), the number of gray levels to 6, and the displacement

vector to (1, 1), the script yields the output shown below. The

first array is the image array created with the vertical texture

14

Texture and Color An RVL Tutorial by Avi Kak

that you specified, and the next array shows the GLCM matrix.

Texture type chosen: vertical

The image:

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

GLCM:

[0, 0, 0, 0, 0, 49]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[49, 0, 0, 0, 0, 0]

Texture attributes:

entropy: 1.0

contrast: 25.0

homogeneity: 0.166

• On the other hand, if in the script of Section 3.3, you set the

texture type to horizontal, you get the output shown below:

Texture type chosen: horizontal

The image:

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

15

Texture and Color An RVL Tutorial by Avi Kak

GLCM:

[0, 0, 0, 0, 0, 49]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[49, 0, 0, 0, 0, 0]

Texture attributes:

entropy: 1.0

contrast: 25.0

homogeneity: 0.166

which is the same as what you saw for the vertical case. This

is a consequence of how the GLCM matrix is made symmetric.

In any case, we have no problem accepting this result since the

two textures are visually the same — even though they are

oriented differently.

• It is interesting to see that if you set the texture type to

checkerboard, you get the following output from the script:

Texture type chosen: checkerboard

The image:

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

GLCM:

[50, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

16

Texture and Color An RVL Tutorial by Avi Kak

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 48]

Texture attributes:

entropy: 0.999

contrast: 0.0

homogeneity: 0.489

• Now our GLCM characterization is different from the previous

two cases. This is great since a checkerboard pattern does look

visually very different from a ruled surface.

• Here is the output of the script if you choose random for the

texture type:

Texture type chosen: random

The image:

[1, 5, 5, 0, 0, 1, 1, 3]

[2, 1, 0, 1, 1, 1, 5, 5]

[5, 1, 4, 3, 1, 5, 3, 2]

[1, 1, 5, 1, 5, 2, 2, 1]

[2, 2, 3, 2, 0, 4, 4, 5]

[2, 1, 5, 0, 3, 2, 3, 3]

[4, 5, 1, 5, 0, 5, 5, 5]

[2, 1, 4, 3, 2, 2, 5, 3]

GLCM:

[2, 3, 2, 2, 0, 1]

[3, 6, 4, 4, 3, 6]

[2, 4, 0, 1, 1, 8]

[2, 4, 1, 0, 2, 4]

[0, 3, 1, 2, 0, 2]

[1, 6, 8, 4, 2, 4]

17

Texture and Color An RVL Tutorial by Avi Kak

Texture attributes:

entropy: 4.70094581328

contrast: 5.9693877551

homogeneity: 0.371428571429

• Later in Section 3.2 when we talk about how to characterize a

GLCM matrix with a small number of attributes, one of the

attributes I’ll talk about will be “contrast”. Here is a texture

that is designed specifically to be of low-contrast. You can get it

by uncommenting line (A5) in the script. Here is the output for

this choice:

Texture type chosen: low_contrast

The image:

[0, 5, 5, 1, 0, 1, 3, 5]

[4, 0, 5, 5, 1, 0, 1, 3]

[0, 4, 0, 5, 5, 1, 0, 1]

[5, 0, 4, 0, 5, 5, 1, 0]

[2, 5, 0, 4, 0, 5, 5, 1]

[3, 2, 5, 0, 4, 0, 5, 5]

[5, 3, 2, 5, 0, 4, 0, 5]

[3, 5, 3, 2, 5, 0, 4, 0]

GLCM:

[30, 0, 0, 0, 0, 0]

[0, 12, 0, 0, 0, 0]

[0, 0, 6, 0, 0, 0]

[0, 0, 0, 6, 0, 0]

[0, 0, 0, 0, 12, 0]

[0, 0, 0, 0, 0, 32]

Texture attributes:

entropy: 2.28547139622

contrast: 0.0

homogeneity: 0.69387755102

18

Texture and Color An RVL Tutorial by Avi Kak

• By the way, if you set the texture type to “None”, you get

default choices in lines (B19) through (B21) of the script. It is

these choices that created a 3× 3 GLCM matrix for the 4× 4

array that was used at the beginning of this section (see page 8)

to explain the basic idea of how one constructs a GLCM matrix.

19

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

3.1: Summary of GLCM Properties

Here is a summary of the GLCM matrix properties:

• GLCM is of size M ×M for an image that has M different gray

levels.

• The matrix is symmetric

• Typically, one does NOT construct a GLCM matrix for the full

range of grayscale values in an image. For 8-bit grayscale

images with its 256 shades of gray (that is, the value of the

brightness at each pixel is an integer between 0 and 255, both

ends inclusive), you are likely to create a GLCM matrix of size

of just 16× 16 that corresponds to a re-quantization of the gray

levels to just 4 bits (for the purpose of texture characterization).

• Also typically, one may construct multiple GLCM matrices for
the same image for different values of the displacement vectors.
At the least, one uses the displacement vectors: (0, 1), (1, 0), and
(1, 1). [These are the only three possible displacement vectors for a unit Chessboard Distance between

the reference pixel and the displaced pixel. (The Chessboard Distance gives us the number of moves required
by the King piece in a chess game to get to a square from its current position on the board.) The Chessboard
Distance, also known as the Chebyshev Distance or the L∞ norm, is equal to the max of the coordinate-wise
differences between two points. The other distance you frequently run into in digital geometry is the

20

Texture and Color An RVL Tutorial by Avi Kak

Cityblock distance, also known as the Manhattan or the Taxicab distance. The Cityblock Distance between
any two points is the sum of the absolute differences of the cooordinates of the two points. More formally, the
Cityblock distance is referred to as the L1 norm. The 8 immediate neighbors of a pixel as shown at left below
are at a Chessboard Distance of 1 from the pixel. However, as shown at right below, only the two column-wise
closest neighbors and the two row-wise closest neighbors of a pixel are at a Cityblock distance of 1:

X X X X

X P X X P X

X X X X

Neighbors at a unit Neighbors at a unit

Chessboard Distance of P Cityblock distance from P

(AKA Chebyshev Distance) (AKA Manhattan or Taxicab Dist.)

L_inf norm: ||x||_inf L_1 norm: ||x||_1

max of coord diffs sum of coord diffs

In and of itself, the GLCM characterization does not care what distance metric you use for the displacement

vector d.]

• To interpret a GLCM matrix as a joint probability distribution,

you need to normalize the matrix by dividing its individual

elements by the sum of all the elements. That gives you a

legitimate joint (or bivariate) probability distribution over two

random variables that represent the grayscale values at the two

ends of the displacement vector.

21

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

3.2: Deriving Texture Measures from GLCM

• Each element of a GLCM matrix provides too “microscopic” a

view of a texture in an image. What we need is a larger

“macroscopic” characterization of the texture from the

information contained in a GLCM matrix. [Let’s say you have

constructed a 16× 16 GLCM matrix (under the assumption that, regardless of the

number of gray levels in an image, you’ll place them in just 16 bins for the purpose of

texture characterization). Each of the 256 numbers in the GLCM matrix gives you a

relative frequency of joint occurrence of the two grayscale values that corresponds to

the row-column position of that element in the matrix. Given these 256 GLCM

numbers, what we need are a much smaller number of numeric characterizations of the

texture that can be derived from the GLCM matrix numbers.]

• Perhaps the most popular characterization of the GLCM matrix

is through an entropy value that can be derived when the

matrix array is interpreted as a joint probability distribution.

This entropy is defined by:

Entropy = −
M−1
∑

i=0

M−1
∑

j=0

P [i, j] log2 P [i, j] (2)

where P [i, j] is the normalized GLCM matrix. As mentioned at

the beginning of Section 3, P [i, j] is the joint probability

distribution of the grayscale values at the two ends of the

22

Texture and Color An RVL Tutorial by Avi Kak

displacement vector in the image.

• Regarding some properties of entropy that are important from

the standpoint of its use as a texture characterizer, it takes on

its maximum value when a probability distribution is uniform

and its minimum value of 0 when the probability distribution

becomes deterministic, meaning that when only a single cell in

the GLCM matrix is populated. [The probability distribution would be uniform for a

completely random texture. And the probability distribution would become deterministic when all of the

grayscale values in the image are identical — that is, when there is no texture in the image.]

• Consider the case when the joint distribution is uniform: Given

a 16× 16 GLCM matrix, we will have P [i, j] = 1/256. In this

case, the entropy is

Entropy = −
15
∑

i=0

15
∑

j=0

1

256
log2 2

−8

= −
15
∑

i=0

15
∑

j=0

1

256
(−8)

= 8.
15
∑

i=0

15
∑

j=0

1

256

= 8 bits (3)

• So if you assign all of the grayscale values in an image to 16 bins

and it turns out that the entropy calculated from the 16× 16

23

Texture and Color An RVL Tutorial by Avi Kak

GLCM matrix is 8 bits, you have a completely random texture

in the image.

• Now consider the opposite case, that is, when an image has the

same grayscale value at all the pixels. In this case, only one cell

of the GLCM matrix would be populated — the cell at the [0, 0]

element of the matrix. By using the property that x · log x goes

to zero as x approaches 0, it is easy to show that the Entropy

becomes zero for this case.

• So, for images whose grayscale values have been placed in 16

bins, we have two bounds on the value of the entropy as derived

from a GLCM matrix: a maximum of 8 bits when the texture is

completely random and a minimum of 0 when all the pixels

have the same grayscale value. For all other textures, the value

of entropy will be between these two bounds.

• The main rule to remember here is that the smaller the value

of the entropy the more nonuniform a GLCM matrix.

• Here are some other textures attributes that are derived from a

GLCM Matrix:

24

Texture and Color An RVL Tutorial by Avi Kak

Energy =

M−1
∑

i=0

M−1
∑

j=0

P [i, j]2

Contrast =
M−1
∑

i=0

M−1
∑

j=0

(i− j)2.P [i, j]

Homogeneity =

M−1
∑

i=0

M−1
∑

j=0

P [i, j]

1 + |i− j|
(4)

• The first of these, Energy, is also called “Uniformity.” Its value

is the smallest when all the P [i, j] values are the same — that

is, for the case of a completely random texture. Note that since

P [i, j] must obey the unit summation constraint, if the values

are high for some values of i and j, they must be low elsewhere.

In the extreme case, only one cell will have the value P [i, j]

equal to 1 and all other cells will be zero. For this extreme case,

Energy acquires the largest value of 1. At the other extreme,

each cell will have a value of 1/256 for the case of a 16x16

GLCM matrix. In this case, Energy will equal

256× (1/256)2 = 1/256. For all other cases of 16× 16 GLCM

matrices, Energy will range from the low of 1/256 to the max of

1.

• Consider now the Contrast attribute of a texture defined in Eqs.

25

Texture and Color An RVL Tutorial by Avi Kak

(4). This attribute takes on a low value when the values in the

GLCM matrix are large along and in the vicinity of the

diagonal. In the extreme case, if only the diagonal entries in the

GLCM matrix are populated, Contrast is 0. As you would

expect, when the displacement vector is (1, 1), the value of

Contrast for an image that consists of diagonal stripes of

constant grayscale values — with each stripe possibly of a

different grayscale value — is zero. This should explain the logic

used for creating the low contrast texture pattern in lines

(B12) through (B17) of the Python script that is shown in the

next section.

• Finally, let’s talk about the Homogeneity attribute defined in

Equation (4). You can think of this attribute as being the

opposite of the Contrast attribute. Homogeneity takes a high

value when the GLCM matrix is populated mainly along the

diagonal. So when Contrast is high, Homogeneity will be low

and vice versa. But note that the two are not opposites in the

strict sense of the word — since their definitions are not

reciprocal. That is, even though they are opposites loosely

speaking, we can expect both these attributes to provide

non-redundant characterizations of the GLCM matrix.

26

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

3.3: Python Code for Experimenting with GLCM

Shown below is the code that was used to generate the GLCM

results you saw previously on pages 11 through 15 of this tutorial.

#!/usr/bin/env python

GLCM.py

Author: Avi Kak (kak@purdue.edu)

Date: September 26, 2016

Changes on January 21, 2018:

##

Code made Python 3 compliant

This script was written as a teaching aid for the lecture on "Textures

and Color" as a part of my class on Computer Vision at Purdue. This

Python script demonstrates how the Gray Level Co-occurrence Matrix can

be used for characterizing image textures.

For educational purposes, this script generates five different types of

textures -- you make the choice by uncommenting one of the statements in lines

(A1) through (A5). You can also set the size of the image array and number

of gray levels to use.

The basic definition of GLCM:

##

The (m,n)-th element of the matrix is the number of times

the reference-pixel gray level is m and the displaced pixel

is n. In order to create a symmetric matrix, when you

increment glcm(m,n) because you found the reference pixel to

be equal to m and the displaced pixel to be n, you also

increment glcm(n,m).

##

The main idea in creating a symmetric GLCM matrix is that

you only care about the fact that the gray levels m and n

occur together at the two ends of the displacement d and

that you don’t care that one of the two appears at one

specific end and the other at the other specific end.

HOW TO USE THIS SCRIPT:

##

1. Specify the texture type you want by uncommenting one of the lines (A1)

through (A6)

27

Texture and Color An RVL Tutorial by Avi Kak

##

Note that if uncomment line (A6), that sets the image size to 4

and the number of gray levels of 3 regardless of the choices you

make in lines (A7) and (A8)

##

2. Set the image size in line (A7)

##

3. Set the number of gray levels in line (A8)

##

4. Set the displacement vector by uncommenting one of the lines (A9),

(A10), or (A11). However, note that the "low_contrast" choice for

the contrast type in line (A5) is low contrast only when the displacement

vector is set as in line (A9).

import random

import math

import functools

UNCOMMENT THE TEXTURE TYPE YOU WNT:

#texture_type = ’random’ #(A1)

texture_type = ’vertical’ #(A2)

#texture_type = ’horizontal’ #(A3)

#texture_type = ’checkerboard’ #(A4)

#texture_type = ’low_contrast’ #(A5)

#texture_type = None #(A6)

IMAGE_SIZE = 8 #(A7)

GRAY_LEVELS = 6 #(A8)

displacement = [1,1] #(A9)

#displacement = [1,0] #(A10)

#displacement = [0,1] #(A11)

image = [[0 for _ in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(B1)

if texture_type == ’random’: #(B2)

image = [[random.randint(0,GRAY_LEVELS-1)

for _ in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(B3)

elif texture_type == ’diagonal’: #(B4)

image = [[GRAY_LEVELS - 1 if (i+j)%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(B5)

elif texture_type == ’vertical’: #(B6)

image = [[GRAY_LEVELS - 1 if i%2 == 0 else 0

for i in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(B7)

elif texture_type == ’horizontal’: #(B8)

image = [[GRAY_LEVELS - 1 if j%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(B9)

elif texture_type == ’checkerboard’: #(B10)

image = [[GRAY_LEVELS - 1 if (i+j+1)%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(B11)

elif texture_type == ’low_contrast’: #(B12)

image[0] = [random.randint(0,GRAY_LEVELS-1) for _ in range(IMAGE_SIZE)] #(B13)

for i in range(1,IMAGE_SIZE): #(B14)

image[i][0] = random.randint(0,GRAY_LEVELS-1) #(B15)

for j in range(1,IMAGE_SIZE): #(B16)

28

Texture and Color An RVL Tutorial by Avi Kak

image[i][j] = image[i-1][j-1] #(B17)

else: #(B18)

image = [[2, 0, 1, 1],[0, 1, 2, 0],[1, 1, 1, 2],[0, 0, 1, 1]] #(B19)

IMAGE_SIZE = 4 #(B20)

GRAY_LEVELS = 3 #(B21)

CALCULATE THE GLCM MATRIX:

print("Texture type chosen: %s" % texture_type) #(C1)

print("The image: ") #(C2)

for row in range(IMAGE_SIZE): print(image[row]) #(C3)

glcm = [[0 for _ in range(GRAY_LEVELS)] for _ in range(GRAY_LEVELS)] #(C4)

rowmax = IMAGE_SIZE - displacement[0] if displacement[0] else IMAGE_SIZE -1 #(C5)

colmax = IMAGE_SIZE - displacement[1] if displacement[1] else IMAGE_SIZE -1 #(C6)

for i in range(rowmax): #(C7)

for j in range(colmax): #(C8)

m, n = image[i][j], image[i + displacement[0]][j + displacement[1]] #(C9)

glcm[m][n] += 1 #(C10)

glcm[n][m] += 1 #(C11)

print("\nGLCM: ") #(C12)

for row in range(GRAY_LEVELS): print(glcm[row]) #(C13)

CALCULATE ATTRIBUTES OF THE GLCM MATRIX:

entropy = energy = contrast = homogeneity = None #(D1)

normalizer = functools.reduce(lambda x,y: x + sum(y), glcm, 0) #(D2)

for m in range(len(glcm)): #(D3)

for n in range(len(glcm[0])): #(D4)

prob = (1.0 * glcm[m][n]) / normalizer #(D5)

if (prob >= 0.0001) and (prob <= 0.999): #(D6)

log_prob = math.log(prob,2) #(D7)

if prob < 0.0001: #(D8)

log_prob = 0 #(D9)

if prob > 0.999: #(D10)

log_prob = 0 #(D11)

if entropy is None: #(D12)

entropy = -1.0 * prob * log_prob #(D13)

continue #(D14)

entropy += -1.0 * prob * log_prob #(D15)

if energy is None: #(D16)

energy = prob ** 2 #(D17)

continue #(D18)

energy += prob ** 2 #(D19)

if contrast is None: #(D20)

contrast = ((m - n)**2) * prob #(D21)

continue #(D22)

contrast += ((m - n)**2) * prob #(D23)

if homogeneity is None: #(D24)

homogeneity = prob / ((1 + abs(m - n)) * 1.0) #(D25)

continue #(D26)

homogeneity += prob / ((1 + abs(m - n)) * 1.0) #(D27)

29

Texture and Color An RVL Tutorial by Avi Kak

if abs(entropy) < 0.0000001: entropy = 0.0 #(D28)

print("\nTexture attributes: ") #(D29)

print(" entropy: %f" % entropy) #(D30)

print(" contrast: %f" % contrast) #(D31)

print(" homogeneity: %f" % homogeneity) #(D32)

30

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

4: Characterizing Image Textures with
Local Binary Pattern (LBP) Histograms

• Another way to create rotationally and grayscale invariant

characterizations of image texture is by using Local Binary

Pattern (LBP) histograms. Such histograms are invariant to

in-plane rotations and to any monotonic transformations of the

grayscale.

• The LBP method for characterizing textures was first

introduced by T. Ojala, M. Pietikäinen, and T. Mäenpää in

their paper “Multiresolution Grayscale and Rotation Invariant

Texture Classification with Local Binary Patterns,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.

24, no. 7, pp. 971-987, 2002.

• Fundamental to understating the idea of LBP is the notion of a

local binary pattern to characterize the grayscale variations

around a pixel through runs of 0s and 1s. Experiments with

textures have shown that runs that consist of a single run of 0s

followed by a single run of 1s carry most of the discriminative

information between different kinds of textures.

• The discussion that follows addresses the following different

31

Texture and Color An RVL Tutorial by Avi Kak

aspects of LBP:

– How to characterize the local inter-pixel variations in

grayscale values by binary patterns in such a way that the

patterns are invariant to linear changes in image contrast;

– How to “reduce” a binary pattern resulting from the

previous step to their canonical forms that stay invariant to

in-plane rotations;

– And, how to focus on “uniform” patterns since they contain

most of the inter-texture discriminatory information and,

subsequently, how to create a histogram based

characterization of a texture.

32

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

4.1: Characterizing a Local Inter-Pixel Grayscale

Variation by a Contrast-Change-Invariant Binary

Pattern

• Consider the pixel at the location marked by uppercase ’X’ in

Fig. A below and its 8 neighboring points on a unit circle. The

exact positions of the neighboring points vis-a-vis the pixel

under consideration is given by

(∆u,∆v) =

(

R cos
(2πp

P

)

, R sin
(2πp

P

)

)

p = 0, 1, 2, .., 7 (5)

with the radius R = 1 and with P = 8. The point p = 0 gives

us the neighboring point that is straight down from the pixel

under consideration; the point p = 1, the neighboring point to

the right of the one that is straight down; and so on. Fig. B on

the next page shows the neighboring points for the different

values of the index p in the equation shown above.
.---> v

|

| --

V | | | | | |

u | | | | | |

| | | | | |

--

| | | | | |

| | | x | | |

| | x | | x | |

--

| | | | | |

| | x | X | x | |

| | | | | |

--

| | x | | x | |

| | | x | | |

| | | | | |

--

| | | | | |

| | | | | |

| | | | | |

--

Fig. A

33

Texture and Color An RVL Tutorial by Avi Kak

--

| | | | | |

| | | | | |

| | | | | |

--

| | | p=4 | | |

| | p=5 | x | p=3 | |

| | x | | x | |

--

| | | | | |

| | x | X | x | |

| | p=6 | | p=2 | |

--

| | x | | x | |

| | p=7 | x | p=1 | |

| | | p=0 | | |

--

| | | | | |

| | | | | |

| | | | | |

--

Fig. B

• The grayscale values at the neighborhood points, of which we

have 8 when P = 8, must be computed with an appropriate

interpolation formula. For example, we could use bilinear

interpolation to estimate the grayscale value at a neighbor

whose coordinates do not coincide with the existing pixel

coordinates in the image. [IMPORTANT: A neighborhood point coincides

with a pixel if it is exactly at the center of the pixel.]

• Let’s say that the labels A, B, C, and D at the four corners of

the rectangle shown at the top of the next page are the centers

of four adjoining pixels and that we want to estimate through

interpolation the gray level at the point marked ’x’ inside the

rectangle. Bilinear interpolation says that the gray level at

point x can be approximated by

image(x) ≈ (1−∆k)(1−∆l)A + (1−∆k)∆lB

+ ∆k(1−∆l)C + ∆k∆lD (6)

34

Texture and Color An RVL Tutorial by Avi Kak

\Del l

--------->

.

A . B

| | . |

\Del k | | . |

| | . |

V | . |

.........|....... x |

| |

C D

• The bilinear interpolation formula is based on the assumption

that the inter-pixel sampling interval is a unit distance along

the horizontal and the vertical axes and that the location of ’x’

is a fraction of unity as measured from point A.

• After estimating the grayscale values at each of the P points

on the circle, we threshold these grayscale values with respect

to the grayscale value at the pixel at the center of the circle.

If the interpolated value at a point is equal or greater than the

value at the central pixel, we set that point to 1. Otherwise,

we set it to 0.

• If (i, j) are the coordinates of the pixel at the center of the

circle, we now create our binary pattern around the circle

through the logic shown below:

pattern = []

for p in range(P):

35

Texture and Color An RVL Tutorial by Avi Kak

image_val_at_p = interpolated value at point p on the circle

if image_val_at_p >= image[i][j]:

pattern.append(1)

else:

pattern.append(0)

• Consider the following example:

| | | |

| 1 | 5 | 3 |

| x | | x |

| | | |

| 5 | 3 | 1 |

| | | |

| x | | x |

| 4 | 0 | 0 |

| | | |

Fig. C

NOTE: ’x’ designates those locations on

the unit circle where the point does

not coincide with the pixel. Cells with

no ’x’ are those where the points on

the circle coincide with those on the

circle.

• Going around the central pixel where the grayscale value is 3,

we start with p=0 point on the unit-circle neighbors of this

pixel. This is the pixel just below the central pixel and the

grayscale value there is 0. The next point on circle, for p=1,

does not coincide with a pixel (meaning with the center of the

rectangle that represents the pixel). This point is in the cell

that belongs to the pixel whose grayscale value is also 0. To find

by bilinear interpolation the grayscale value at that point, we

36

Texture and Color An RVL Tutorial by Avi Kak

see the following situation:

0.707

--------->

.

3 . 1

| | . |

0.707 | | . |

| | . |

V | . |

.........|....... x |

| |

0 0

Fig. D

• In the depiction shown above, note that the gray levels 3, 1, 0,

and 0 are at the centers of the corresponding pixels.

Therefore, the relationship of the point marked ’x’ shown above

to the lower right-hand corner of the cell is the same as between

the ’x’ and the center of the right-most cell in the bottom row of

the array on the previous page.

• Using the bilinear interpolation formula shown earlier, we

estimate the grayscale value at the point marked ’x’ as

3× (1− 0.707)× (1− 0.707) + 1× (1− 0.707)× 0.707 +

0× 0.707× (1− 0.707) + 0× 0.707× 0.707 = 0.464 (7)

• If we carry out similar calculations for each of the six remaining

points on the circle, we get the following 8 grayscale values on

the circle:

37

Texture and Color An RVL Tutorial by Avi Kak

0.0 0.464 1.0 3.0 5.0 2.828 5.0 3.292

Thresholding these values by 3.0, the pixel value at the center of

the circle, gives us the binary pattern:

0 0 0 1 1 0 1 1

That brings us to the issue of how to make such binary patterns

invariant to in-plane rotations of the image.

38

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

4.2: Generating Rotation-Invariant Representations

from Local Binary Patterns

• Let’s say you are imaging a 2D textured surface, such as a brick

wall, under the condition that the sensor plane in your camera

is parallel to the surface. You have an in-plane rotation of the

image if you turn the camera while keeping its sensor plane

parallel to the textured surface. As you rotate the camera, say,

clockwise, the digital image recorded by the camera would

undergo a counter-clockwise rotation through the same angle.

• Under the conditions described above, an in-plane rotation of

the image will cause the P points on a circular neighborhood to

move along the circle. We now need some way to characterize

such a binary pattern for all its possible in-plane rotations. The

original authors of LBP proposed circularly rotating the

computed binary pattern until the largest number of 0’s occupy

the most significant positions. This is the same as circularly

rotating a binary pattern until it acquires the smallest integer

value. We will refer to this representation of a binary pattern as

its minIntVal representation.

• In a Python implementation, the minIntVal form of a binary

pattern can easily be found by using my BitVector module. In

39

Texture and Color An RVL Tutorial by Avi Kak

the code fragment shown below, pattern is a binary pattern at

a pixel as computed by the algorithm presented in the previous

section. In the first statement, we simply initialize a BitVector

instance with the pattern. In the second statement, we

construct a list of the integer values of all circularly shifted

versions of the pattern, with each circular shift being to the left

by one bit. Finally, in the third statement, we construct a

BitVector from the smallest integer values calculated in the

second statement. This is the bit pattern that characterizes the

local texture at the pixel in question in a rotation invariant

manner.

bv = BitVector.BitVector(bitlist = pattern)

intvals_for_circular_shifts = [int(bv << 1) for _ in range(P)]

minbv = BitVector.BitVector(intVal = min(intvals_for_circular_shifts), \

size = P)

• I’ll next show the minIntVal versions of the binary patterns for

the image represented by the randomly generated 8x8 array of

numbers shown below. The binary patterns will be for the

parameter values R = 1 and P = 8. Here is the image array:

The image:

[5, 4, 2, 4, 2, 2, 4, 0]

[4, 2, 1, 2, 1, 0, 0, 2]

[2, 4, 4, 0, 4, 0, 2, 4]

[4, 1, 5, 0, 4, 0, 5, 5]

[0, 4, 4, 5, 0, 0, 3, 2]

[2, 0, 4, 3, 0, 3, 1, 2]

[5, 1, 0, 0, 5, 4, 2, 3]

[1, 0, 0, 4, 5, 5, 0, 1]

40

Texture and Color An RVL Tutorial by Avi Kak

• The LBP algorithm described in the first section gives us 36

binary patterns for the inner 6x6 subarray of the image array.

[The R = 1 option requires that we ignore the first and the last rows, with the row

index values at 0 and 7, and the first and the last columns, with column index values

0 and 7, for generating the binary patterns.] I have shown the first six of

these patterns below; these correspond to the inner six pixels in

the second row of the image array:

pixel at (1,1):

pattern: [1, 1, 0, 1, 1, 1, 1, 1]

minbv: 01111111

pixel at (1,2):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

pixel at (1,3):

pattern: [0, 1, 0, 1, 1, 1, 0, 1]

minbv: 01010111

pixel at (1,4):

pattern: [1, 0, 0, 1, 1, 1, 1, 1]

minbv: 00111111

pixel at (1,5):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

pixel at (1,6):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

...

...

41

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

4.3: Encoding the minIntVal Forms of the Local

Binary Patterns

• Recall that the binary patterns and the corresponding

minIntVal versions of those patterns shown on the previous

page represent only a pixel-based property, albeit one that is

rotationally invariant, of the local grayscale variations in the

vicinity of the pixel. Our ultimate goal is to create an

image-based characterization of the texture.

• Toward that end, we now encode each minIntVal binary

pattern by a single integer. Since each such integer will

represent the local grayscale variations at each pixel, a

histogram of all such encodings may subsequently be used to

characterize the texture in an image.

• That leads to the question as to what single integer encoding to

use for each minIntVal binary pattern.

• An obvious answer to this question is to use the integer value of

the patterns. For the case of P = 8 patterns, that would mean

associating an integer value between 0 and 127, both ends

inclusive, with each rotationally invariant minIntVal pattern.

Unfortunately, what speaks against this straightforward

42

Texture and Color An RVL Tutorial by Avi Kak

encoding of the patterns is the observation made by the creators

of LBP that generally only those minIntVal patterns are useful

for image-level characterization of a texture that consist of a

single run of 0’s followed by a single run of 1’s — assuming that

a pattern has both 0’s and 1’s. Such binary patterns were

called uniform by them.

• With that observation in mind, the creators of LBP have

suggested the following encodings for the patterns:

– If the minIntVal representation of a binary pattern has

exactly two runs, that is, a run of 0s followed by a run of 1s,

represent the pattern by the number of 1’s in the second run.

Such encodings would be integers between 1 and P − 1, both

ends inclusive.

– Else, if the minIntVal representation consists of all 0’s,

represent it be the encoding 0.

– Else, if the minIntVal representation consists of all 1’s,

represent it by the encoding P .

– Else, if the minIntVal representation involves more than

two runs, encode it by the integer P + 1.

• The encoding formula presented above requires that we first

43

Texture and Color An RVL Tutorial by Avi Kak

extract the individual runs in the minIntVal form of a local

binary pattern. Fortunately, the BitVector module also gives

a function runs() that returns the runs of 0s and 1’s in a bit

pattern. When you invoke this function on the minIntVal bit

pattern, the first run will be formed by the 0s assuming that

there are at least two runs in a pattern. In the code fragment

shown below, the statements in lines (C36) through (C48)

implement the logic presented above for encoding the

minIntVal representations of the local binary patterns. This

code section also shows how we construct a histogram of the

P + 2 encodings at the same time:

lbp_hist = {t:0 for t in range(P+2)} #(C6)

for i in range(R,rowmax): #(C7)

for j in range(R,colmax): #(C8)

print("\npixel at (%d,%d):" % (i,j)) #(C9)

pattern = [] #(C10)

for p in range(P): #(C11)

We use the index k to point straight down and l to point to the

right in a circular neighborhood around the point (i,j). And we

use (del_k, del_l) as the offset from (i,j) to the point on the

R-radius circle as p varies.

del_k,del_l = R*math.cos(2*math.pi*p/P), R*math.sin(2*math.pi*p/P) #(C12)

if abs(del_k) < 0.001: del_k = 0.0 #(C13)

if abs(del_l) < 0.001: del_l = 0.0 #(C14)

k, l = i + del_k, j + del_l #(C15)

k_base,l_base = int(k),int(l) #(C16)

delta_k,delta_l = k-k_base,l-l_base #(C17)

if (delta_k < 0.001) and (delta_l < 0.001): #(C18)

image_val_at_p = float(image[k_base][l_base]) #(C19)

elif (delta_l < 0.001): #(C20)

image_val_at_p = (1 - delta_k) * image[k_base][l_base] + \

delta_k * image[k_base+1][l_base] #(C21)

elif (delta_k < 0.001): #(C22)

image_val_at_p = (1 - delta_l) * image[k_base][l_base] + \

delta_l * image[k_base][l_base+1] #(C23)

else: #(C24)

image_val_at_p = (1-delta_k)*(1-delta_l)*image[k_base][l_base] + \

(1-delta_k)*delta_l*image[k_base][l_base+1] + \

delta_k*delta_l*image[k_base+1][l_base+1] + \

delta_k*(1-delta_l)*image[k_base+1][l_base] #(C25)

if image_val_at_p >= image[i][j]: #(C26)

pattern.append(1) #(C27)

44

Texture and Color An RVL Tutorial by Avi Kak

else: #(C28)

pattern.append(0) #(C29)

print("pattern: %s" % pattern) #(C30)

bv = BitVector.BitVector(bitlist = pattern) #(C31)

intvals_for_circular_shifts = [int(bv << 1) for _ in range(P)] #(C32)

minbv = BitVector.BitVector(intVal = \

min(intvals_for_circular_shifts), size = P) #(C33)

print("minbv: %s" % minbv) #(C34)

bvruns = minbv.runs() #(C35)

encoding = None

if len(bvruns) > 2: #(C36)

lbp_hist[P+1] += 1 #(C37)

encoding = P+1 #(C38)

elif len(bvruns) == 1 and bvruns[0][0] == ’1’: #(C39)

lbp_hist[P] += 1 #(C40)

encoding = P #(C41)

elif len(bvruns) == 1 and bvruns[0][0] == ’0’: #(C42)

lbp_hist[0] += 1 #(C43)

encoding = 0 #(C44)

else: #(C45)

lbp_hist[len(bvruns[1])] += 1 #(C46)

encoding = len(bvruns[1]) #(C47)

print("encoding: %s" % encoding) #(C48)

print("\nLBP Histogram: %s" % lbp_hist) #(C49)

• Shown below are the encodings for the local binary patterns for

each of the inner 6x6 section of the 8x8 image array presented

towards the end of the previous subsection:

pixel at (1,1):

pattern: [1, 1, 0, 1, 1, 1, 1, 1]

minbv: 01111111

encoding: 7

pixel at (1,2):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (1,3):

pattern: [0, 1, 0, 1, 1, 1, 0, 1]

minbv: 01010111

encoding: 9

pixel at (1,4):

pattern: [1, 0, 0, 1, 1, 1, 1, 1]

minbv: 00111111

encoding: 6

45

Texture and Color An RVL Tutorial by Avi Kak

pixel at (1,5):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (1,6):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (2,1):

pattern: [0, 0, 1, 0, 0, 0, 0, 0]

minbv: 00000001

encoding: 1

pixel at (2,2):

pattern: [1, 0, 0, 0, 0, 0, 1, 0]

minbv: 00000101

encoding: 9

pixel at (2,3):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (2,4):

pattern: [1, 0, 0, 0, 0, 0, 0, 0]

minbv: 00000001

encoding: 1

pixel at (2,5):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (2,6):

pattern: [1, 1, 1, 1, 0, 0, 0, 0]

minbv: 00001111

encoding: 4

pixel at (3,1):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (3,2):

pattern: [0, 0, 0, 0, 0, 0, 0, 0]

minbv: 00000000

encoding: 0

pixel at (3,3):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

46

Texture and Color An RVL Tutorial by Avi Kak

pixel at (3,4):

pattern: [0, 0, 0, 0, 1, 0, 0, 0]

minbv: 00000001

encoding: 1

pixel at (3,5):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (3,6):

pattern: [0, 0, 1, 0, 0, 0, 0, 0]

minbv: 00000001

encoding: 1

pixel at (4,1):

pattern: [0, 0, 1, 0, 0, 0, 0, 0]

minbv: 00000001

encoding: 1

pixel at (4,2):

pattern: [1, 0, 1, 0, 1, 0, 1, 0]

minbv: 01010101

encoding: 9

pixel at (4,3):

pattern: [0, 0, 0, 0, 0, 0, 0, 0]

minbv: 00000000

encoding: 0

pixel at (4,4):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (4,5):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (4,6):

pattern: [0, 0, 0, 1, 1, 0, 0, 0]

minbv: 00000011

encoding: 2

pixel at (5,1):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (5,2):

pattern: [0, 0, 0, 1, 1, 0, 0, 0]

minbv: 00000011

encoding: 2

47

Texture and Color An RVL Tutorial by Avi Kak

pixel at (5,3):

pattern: [0, 0, 0, 0, 1, 1, 1, 0]

minbv: 00000111

encoding: 3

pixel at (5,4):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (5,5):

pattern: [1, 0, 0, 0, 0, 0, 0, 1]

minbv: 00000011

encoding: 2

pixel at (5,6):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (6,1):

pattern: [0, 0, 0, 1, 0, 1, 1, 1]

minbv: 00010111

encoding: 9

pixel at (6,2):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (6,3):

pattern: [1, 1, 1, 1, 1, 1, 1, 1]

minbv: 11111111

encoding: 8

pixel at (6,4):

pattern: [1, 0, 0, 0, 0, 0, 0, 0]

minbv: 00000001

encoding: 1

pixel at (6,5):

pattern: [1, 0, 0, 0, 0, 0, 1, 1]

minbv: 00000111

encoding: 3

pixel at (6,6):

pattern: [0, 0, 1, 1, 0, 1, 1, 1]

minbv: 00110111

encoding: 9

LBP Histogram: {0: 2, 1: 6, 2: 3, 3: 2, 4: 1, 5: 0, 6: 1, 7: 1, 8: 15, 9: 5}

48

Texture and Color An RVL Tutorial by Avi Kak

• As displayed in the last line above, when we construct a

histogram over the P + 2 encodings of the patterns, we get the

following result for the random 8x8 image array shown earlier:

LBP Histogram: {0: 2, 1: 6, 2: 3, 3: 2, 4: 1, 5: 0, 6: 1, 7: 1, 8: 15, 9: 5}

• Shown below are the LBP histograms for the other cases of

textures you can produce with the LBP.py script that is

presented in the next subsection.
Texture type: vertical

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0]

LBP Histogram: {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 18, 9: 18}

Texture type:: horizontal

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

[5, 5, 5, 5, 5, 5, 5, 5]

[0, 0, 0, 0, 0, 0, 0, 0]

LBP Histogram: {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 18, 9: 18}

49

Texture and Color An RVL Tutorial by Avi Kak

Texture type chosen: checkerboard

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

[0, 5, 0, 5, 0, 5, 0, 5]

[5, 0, 5, 0, 5, 0, 5, 0]

LBP Histogram: {0: 18, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 18, 9: 0}

50

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

4.4: Python Code for Experimenting with LBP

All of the LBP based results shown earlier were produced by the

Python script shown below.

The script generates elementary textures for you and applies the

LBP algorithm to the textures. You can specify the texture you

want by uncommenting one of lines in (A1) through (A5).

The script allows you to set any arbitrary size for the image array

and the number of gray levels you want in the image.

The script also allows you to give whatever values you wish to the

P and R parameters needed by the LBP algorithm.

#!/usr/bin/env python

LBP.py

Author: Avi Kak (kak@purdue.edu)

Date: November 1, 2016

Changes on January 21, 2018:

##

Code made Python 3 compliant

This script was written as a teaching aid for the lecture on "Textures and Color"

as a part of my class on Computer Vision at Purdue.

##

This Python script demonstrates how Local Binary Patterns can be used for

characterizing image textures.

For educational purposes, this script generates five different types of textures

-- you make the choice by uncommenting one of the statements in lines (A1)

through (A5). You can also set the size of the image array and number of gray

levels to use.

HOW TO USE THIS SCRIPT:

51

Texture and Color An RVL Tutorial by Avi Kak

##

1. Specify the texture type you want by uncommenting one of the lines (A1)

through (A5)

##

2. Set the image size in line (A6)

##

3. Set the number of gray levels in line (A7)

##

4. Choose a value for the circle radius R in line (A8)

#3

5. Choose a value for the number of sampling points on the circle in line (A9).

Calling syntax: LBP.py

import random

import math

import BitVector

UNCOMMENT THE TEXTURE TYPE YOU WANT:

#texture_type = ’random’ #(A1)

texture_type = ’vertical’ #(A2)

#texture_type = ’horizontal’ #(A3)

#texture_type = ’checkerboard’ #(A4)

#texture_type = None #(A5)

IMAGE_SIZE = 8 #(A6)

#IMAGE_SIZE = 4 #(A6)

GRAY_LEVELS = 6 #(A7)

R = 1 # the parameter R is radius of the circular pattern #(A8)

P = 8 # the number of points to sample on the circle #(A9)

image = [[0 for _ in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(B1)

if texture_type == ’random’: #(B2)

image = [[random.randint(0,GRAY_LEVELS-1)

for _ in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(B3)

elif texture_type == ’diagonal’: #(B4)

image = [[GRAY_LEVELS - 1 if (i+j)%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(B5)

elif texture_type == ’vertical’: #(B6)

image = [[GRAY_LEVELS - 1 if i%2 == 0 else 0

for i in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(B7)

elif texture_type == ’horizontal’: #(B8)

image = [[GRAY_LEVELS - 1 if j%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(B9)

elif texture_type == ’checkerboard’: #(B10)

image = [[GRAY_LEVELS - 1 if (i+j+1)%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(B11)

else: #(B12)

image = [[1, 5, 3, 1],[5, 3, 1, 4],[4, 0, 0, 0],[2, 3, 4, 5]] #(B13)

IMAGE_SIZE = 4 #(B14)

GRAY_LEVELS = 3 #(B15)

print("Texture type chosen: %s" % texture_type) #(C1)

52

Texture and Color An RVL Tutorial by Avi Kak

print("The image: ") #(C2)

for row in range(IMAGE_SIZE): print(image[row]) #(C3)

lbp = [[0 for _ in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(C4)

rowmax,colmax = IMAGE_SIZE-R,IMAGE_SIZE-R #(C5)

lbp_hist = {t:0 for t in range(P+2)} #(C6)

for i in range(R,rowmax): #(C7)

for j in range(R,colmax): #(C8)

print("\npixel at (%d,%d):" % (i,j)) #(C9)

pattern = [] #(C10)

for p in range(P): #(C11)

We use the index k to point straight down and l to point to the

right in a circular neighborhood around the point (i,j). And we

use (del_k, del_l) as the offset from (i,j) to the point on the

R-radius circle as p varies.

del_k,del_l = R*math.cos(2*math.pi*p/P), R*math.sin(2*math.pi*p/P) #(C12)

if abs(del_k) < 0.001: del_k = 0.0 #(C13)

if abs(del_l) < 0.001: del_l = 0.0 #(C14)

k, l = i + del_k, j + del_l #(C15)

k_base,l_base = int(k),int(l) #(C16)

delta_k,delta_l = k-k_base,l-l_base #(C17)

if (delta_k < 0.001) and (delta_l < 0.001): #(C18)

image_val_at_p = float(image[k_base][l_base]) #(C19)

elif (delta_l < 0.001): #(C20)

image_val_at_p = (1 - delta_k) * image[k_base][l_base] + \

delta_k * image[k_base+1][l_base] #(C21)

elif (delta_k < 0.001): #(C22)

image_val_at_p = (1 - delta_l) * image[k_base][l_base] + \

delta_l * image[k_base][l_base+1] #(C23)

else: #(C24)

image_val_at_p = (1-delta_k)*(1-delta_l)*image[k_base][l_base] + \

(1-delta_k)*delta_l*image[k_base][l_base+1] + \

delta_k*delta_l*image[k_base+1][l_base+1] + \

delta_k*(1-delta_l)*image[k_base+1][l_base] #(C25)

if image_val_at_p >= image[i][j]: #(C26)

pattern.append(1) #(C27)

else: #(C28)

pattern.append(0) #(C29)

print("pattern: %s" % pattern) #(C30)

bv = BitVector.BitVector(bitlist = pattern) #(C31)

intvals_for_circular_shifts = [int(bv << 1) for _ in range(P)] #(C32)

minbv = BitVector.BitVector(intVal = \

min(intvals_for_circular_shifts), size = P) #(C33)

print("minbv: %s" % minbv) #(C34)

bvruns = minbv.runs() #(C35)

encoding = None

if len(bvruns) > 2: #(C36)

lbp_hist[P+1] += 1 #(C37)

encoding = P+1 #(C38)

elif len(bvruns) == 1 and bvruns[0][0] == ’1’: #(C39)

lbp_hist[P] += 1 #(C40)

encoding = P #(C41)

elif len(bvruns) == 1 and bvruns[0][0] == ’0’: #(C42)

lbp_hist[0] += 1 #(C43)

53

Texture and Color An RVL Tutorial by Avi Kak

encoding = 0 #(C44)

else: #(C45)

lbp_hist[len(bvruns[1])] += 1 #(C46)

encoding = len(bvruns[1]) #(C47)

print("encoding: %s" % encoding) #(C48)

print("\nLBP Histogram: %s" % lbp_hist) #(C49)

54

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

5: Characterizing Image Textures with a
Gabor Filter Family

• Gabor filters are spatially localized operators for analyzing an

image for periodicities at different frequencies and in different

directions. To the extent that many image textures are

composed of repetitively occurring micro-patterns, that makes

them ideal for characterization by Gabor filters.

• You can think of a Gabor filter as a highly localized Fourier

transform in which the localization is achieved by applying a

Gaussian decay function to the pixels. Whereas the Gaussian

weighting gives us the localization needed, the direction of the

periodicities in the underlying Fourier kernel allows us to

characterize a texture in that direction.

• To underscore the importance of Gabor filters for texture

characterization, it is a part of the MPEG-7 multimedia content

description standard. The standard specifies description formats

for the different components of multi-media objects such as

audio, images, and video. It is meant to be used as a

complement to the MPEG-4 standard whose primary focus is

the standardization of compression routines for multi-media

objects. The Gabor filter based texture characterization in

55

Texture and Color An RVL Tutorial by Avi Kak

MPEG-7 is meant to facilitate image search and retrieval. [The

other two MPEG standards in current use are MPEG-1 and MPEG-2, both concerned primarily with the

image resolution to be made available in a video service. MPEG-1, which is the oldest such standard,

specifies an image resolution of 352× 240 at 30 fps (frames per second). On the other hand, MPEG-2

specifies two image resolutions, 720 × 480 and 1280 × 720, both at 60 fps. The acronym MPEG stands for

“Moving Picture Experts Group”. MPEG is a part of ISO (International Organization for Standardization).]

• The Gabor filter as used in MPEG-7 makes 30 measurements

on a texture. These consist of 6 orientations and 5 spatial

frequency bands, as shown in the figure on the next page.

Figure 1: Defining the Gabor texture channels for the MPEG-7 stan-
dard by dividing the spatial frequencies in polar coordinates. The Ga-

bor filter bank in this case consists of Gabor convolutional operators
at 6 orientations and 5 spatial frequencies.

56

Texture and Color An RVL Tutorial by Avi Kak

• Don’t worry if you do not fully understand what is shown in

Figure 1 at this time. The explanation that follows will explain

what is meant by the frequencies and the frequency bands in

the figure and also what we mean by the orientations of a

Gabor filter.

• Suffice it to say at the moment that if f0 is the frequency

associated with the outermost band of frequencies in the figure,

the other frequency band boundaries are given by

fs =
f0
2s

s = 0, 1, 2, 3, 4 (8)

where s = 0 obviously corresponds to the outer boundary of the

outermost band. Note that, except for the lowest band, each

band represents an octave (since the upper limit of frequencies

in each band is twice the lower limit). Here are the frequency

bandwidths for the five different bands:

57

Texture and Color An RVL Tutorial by Avi Kak

band1 =

(

f0
2
, f0

)

band2 =

(

f0
4
,
f0
2

)

band3 =

(

f0
8
,
f0
4

)

band4 =

(

f0
16

,
f0
8

)

band5 =

(

0,
f0
16

)

• In what follows, I will start with a brief review of the 2D Fourier

transform.

58

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

5.1: A Brief Review of 2D Fourier Transform

• Let’s start with the expression for the 2D Fourier transform of

an image:

G(u, v) =

∫ ∞

x=−∞

∫ ∞

y=−∞
g(x, y)e−j2π(ux+vy)dxdy (9)

and its inverse Fourier transform:

g(x, y) =

∫ ∞

−∞
G(u, v)ej2π(ux+vy)dudv (10)

• If we assume that our image consists of a single sinusoidal wave

that exhibits a periodicity of u0 cycles per unit length along the

x-axis and v0 cycles per unit length along the y-axis, then

G(u, v) = δ(u− u0, v − v0) (11)

where δ(u, v) is a dirac delta function that is non-zero only at

the point (u0, v0) in the (u, v)-plane. As is to be expected, the

image g(x, y) for such a G(u, v) would be given by

g(x, y) = ej2π(u0x+v0y)

= cos

(

2π(u0x+ v0y)

)

+ j sin

(

2π(u0x+ v0y)

)

(12)

59

Texture and Color An RVL Tutorial by Avi Kak

The real part (and also the imaginary part) of the expression on

the right above is a two-dimensional sinusoidal wave (think of an

ocean wave) in the (x, y) plane that cuts the x-axis at u-cycles

per unit length and the y-axis at v cycles per unit length.

• As mentioned above, in the Fourier transform G(u, v), u is the

frequency of the 2D sinusoid as seen along the x-axis and v the

frequency of the same along the y-axis. The frequency along the

direction in the (x, y) plane along which the sinusoid changes

more rapidly (in terms of cycles per unit length) is given by

f =
√

u2 + v2 (13)

and the direction θ of the maximum rate of change is given by

the angle

θ = arctan(v/u) (14)

that is subtended with the x-axis. If we wish, we can express

the frequency components u and v in polar coordinates:

u = f ∗ cos(θ)
v = f ∗ sin(θ) (15)

• In the polar representation of the frequencies, the formula for

the Fourier transform shown at the beginning of this section can

be expressed as

G(f, θ) =

∫ ∞

r=0

∫ 2π

θ=0

g(x, y)e
−j2πf

(

x cos(θ)+y sin(θ)

)

dxdy (16)

60

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

5.2: The Gabor Filter Operator

• The convolutional operator for the continuous form a Gabor

filter is given by:

h(x, y; u, v) =
1√
πσ

e−
x2+y2

2σ2 e−j2π(ux+vy) (17)

where u is the spatial frequency along x and v is the spatial

frequency along y. That is, if you looked at only those points of

h(x, y; u, v) that are on the x-axis, you will see a sinusoid with

a frequency of u cycles per unit length. And, if you did the

same along the y-axis, you will see a sinusoid with a frequency

of v cycles per unit length.

• Being a convolutional operator, we slide it to each pixel in the

image f(x,y), flip it with respect to the x and the y axes,

multiply the grayscale values at the pixels with the

corresponding values in the above operator and integrate the

products:

g(x, y; u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(α, β)h(x− α, y − β; u, v)dαdβ (18)

• If you substitute the expression for h(x, y; u, v) in the above

equation — but without the exponential decay term — what

61

Texture and Color An RVL Tutorial by Avi Kak

you’ll get will be the same as the 2D Fourier transform (except

for a phase shift at each of the frequencies).

• What that implies is that the best way to interpret the Gabor

operator is to think of it as a localized Fourier transform of an

image where, for the calculation at each locale in the image, you

weight the pixels away from the locale according to the

exponential decay factor. Obviously, the decay rate with respect

to the pixel coordinates is controlled by the ”standard

deviation” σ

• What is interesting is that this Gaussian weighting in the space

domain results in Gaussian weighting in the frequency domain.

To see this, the Fourier transform of

h(x, y; u0, v0) =
1

√

(π)σ
e−

1

2

x2+y2

2σ2 e−j2π(u0x+v0y) (19)

is given by

H(u, v; x, y) =
σ2

2
e
−πσ2

(

(u−u0)
2+(v−v0)

2

)

ej2π(u0x+v0y) (20)

• What that shows is that each Gabor operator involves a band of

frequencies around the central frequency (u0, v0) of the filter

operator. The width of this frequency band is inversely

proportional to the width of the space domain operator. This

should clarify by what it means to create a Gabor filter for each

of the 30 “channels” shown earlier in Figure 1 for how the

62

Texture and Color An RVL Tutorial by Avi Kak

Gabor filter is used in MPEG-7.

• With regard to its implementation, it is more common to

express the Gabor filter operator in terms of the polar

coordinates in the frequency domain.

h(x, y; f, θ) =
1√
πσ

e−
1

2

x2+y2

2σ2 e−j2πf(x cos(θ)+y sin(θ)) (21)

• To remind the reader, when we convolve an image g(x, y) with

this operator, at each pixel we will find the component of the

localized Gaussian weighted Fourier transform at the frequency

f along the direction given by θ with respect to the x axis. The

form shown above can be broken into the real part and the

imaginary part:

hre(x, y; f, θ) =
1√
πσ

e−
1

2

x2+y2

2σ2 cos

(

2πf(x cos(θ) + y sin(θ))

)

him(x, y; f, θ) =
1√
πσ

e−
1

2

x2+y2

2σ2 sin

(

2πf(x cos(θ) + y sin(θ))

)

(22)

For discrete implementation, we can represent the real and the

imaginary parts as

63

Texture and Color An RVL Tutorial by Avi Kak

hre(i, j; f, θ) =
1√
πσ

e−
1

2

i2+j2

2σ2 cos

(

2πf(i cos(θ) + j sin(θ))

)

him(i, j; f, θ) =
1√
πσ

e−
1

2

i2+j2

2σ2 sin

(

2πf(i cos(θ) + j sin(θ))

)

(23)

where i represents the row index and the j the column index.

Note that we commonly think of the x-axis as being along the

horizontal, going from left to right, and the y-axis as being

along the vertical, going from bottom to top. However, in the

discrete version, we think of the i index as representing the rows

(that is, i is along the vertical, going from top to bottom, and j

is along the horizontal, going from left to right. The origin in

the continuous case is usually at the center of the (x, y) plane.

The origin in the discrete case is at the upper left corner.

• An important issue for the discrete case is how far one should

go from the origin for a given value of σ. Obviously, the smaller

the value of σ, the faster the drop-off in terms of the weighting

given to the pixels in the image, and, therefore, the smaller the

effective footprint of the operator on the (x, y) plane. A

commonly used rule of thumb for the discrete case is to let i and

j cover a bounding box that goes from −int(3σ) to int(3σ)

along the x and the y axes.

64

Texture and Color An RVL Tutorial by Avi Kak

• As to purpose played by the coefficient

1√
πσ

(24)

its purpose is to ensure that the “energy” of the operator is

unity. For the continuous case, the energy constraint is defined

as

∫ ∞

x=−∞

∫ ∞

y=−∞
|h(x, y)|2 = 1 (25)

For the discrete case, you’d hopefully get a good approximation

to the constraint with the summation shown below:

int(3σ)
∑

i=−int(3σ)

int(3σ)
∑

j=−int(3σ)

|h(i, j)|2 ≈ 1 (26)

• The next subsection presents a Python script, Gabor.py, that

first generates a Gabor filter bank and then applies it to some

internally created image arrays. In that script, the basic Gabor

operator is defined by the function gabor() that is reproduced

below. As you can see, the statements in lines (B12) and (B13)

correspond to the two definitions shown previously in Eq. (23).

def gabor(sigma, theta, f, size): #(B1)

assert size >= 6 * sigma, \

"\n\nThe size of the Gabor operator must be at least 6 times sigma" #(B2)

W = size # Gabor operator Window width #(B3)

65

Texture and Color An RVL Tutorial by Avi Kak

coef = 1.0 / (math.sqrt(math.pi) * sigma) #(B4)

ivals = range(-(W//2), W//2+1) #(B5)

jvals = range(-(W//2), W//2+1) #(B6)

greal = [[0.0 for _ in jvals] for _ in ivals] #(B7)

gimag = [[0.0 for _ in jvals] for _ in ivals] #(B8)

energy = 0.0 #(B9)

for i in ivals: #(B10)

for j in jvals: #(B11)

greal[i][j] = coef * math.exp(-((i**2 + j**2)/(2.0*sigma**2))) *\

math.cos(2*math.pi*(f/(1.0*W))*(i*math.cos(theta) +

j * math.sin(theta))) #(B12)

gimag[i][j] = coef * math.exp(-((i**2 + j**2)/(2.0*sigma**2))) *\

math.sin(2*math.pi*(f/(1.0*W))*(i*math.cos(theta) +

j * math.sin(theta))) #(B13)

energy += greal[i][j] ** 2 + gimag[i][j] ** 2 #(B14)

normalizer_r = functools.reduce(lambda x,y: x + sum(y), greal, 0) #(B15)

normalizer_i = functools.reduce(lambda x,y: x + sum(y), gimag, 0) #(B16)

print("\nnormalizer for the real part: %f" % normalizer_r) #(B17)

print("normalizer for the imaginary part: %.10f" % normalizer_i) #(B18)

print("energy: %f" % energy) #(B19)

return (greal, gimag) #(B20)

• In the Gabor.py script in the next subsection, the function

shown above is used to create a bank of Gabor filters using the

function shown below:

def generate_filter_bank(sigma, size, how_many_frequencies,

how_many_directions): #(C1)

filter_bank = {f : {d : None for d in range(how_many_directions)}

for f in range(how_many_frequencies)} #(C2)

for freq in range(1,how_many_frequencies): #(C3)

for direc in range(how_many_directions): #(C4)

filter_bank[freq][direc] = \

gabor(sigma, direc*math.pi/how_many_directions, 2*freq, size) #(C5)

return filter_bank #(C6)

• In the function shown above, note the multiplier 2 for the

variable freq and the multiplier π/how many directions. So

if we choose 3 for how many frequencies, we will be testing

the periodicities at 2, 4, 6 cycles per window width. Similarly, if

we choose 4 for how many directions, we will be choosing the

66

Texture and Color An RVL Tutorial by Avi Kak

angles 0, π/4, π/2, and 3π/4 for the directions.

• The two function defined above, gabor() and

generate filter bank(), generate the convolutional operators

presented in Figure 2 As you can see, the rows in the figure are

paired, with the fist row in each pair for the real part of the

Gabor convolutional operator and the second row for the

imaginary part. The first two rows are for the spatial frequency

of 2 cycles per operator width; the next two rows for 4 cycles

per operator width; and the bottom two rows for 6 cycles per

operator width. The four columns stand for the four spatial

directions of the operator as listed in the previous bullet.

• The Gabor filter bank shown in the figure was used to measure

the texture in the following 32× 32 image array:

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

[5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0]

we get the following characterization of the texture with a

Gabor filter family:

67

Texture and Color An RVL Tutorial by Avi Kak

Figure 2: This Gabor filter bank was generated by my Python script
Gabor.py presented in the next subsection. See the narrative for the

parameters associated with each convolutional operator shown above.

68

Texture and Color An RVL Tutorial by Avi Kak

Gabor filter output:

[2.7185178980, 2.802698256, 4.382719891, 2.802698252]

[0.0035060595, 0.119809025, 7.525635518, 0.119809025]

[0.0011640249, 0.004196268, 7.099408827, 0.004196268]

• About the output shown, your first question is likely to be:

Since the result obtained by convolving an image with an

operator is again an image (which may be of smaller size

depending on how you deal with the boundary pixels), how

come we are not seeing 12 different output images, with one

output image for each of the 12 convolutional operators?

Answer: Each number shown above is a summation of all the

output values obtained for each of the 12 operators. To be even

more precise, each convolutional operator has a real part and an

imaginary part. For each operator, we convolve the input image

with the real and the imaginary parts separately, sum the

output values obtained, and then take the positive square-root

of the sum of the squares of those two numbers.

• In the output shown above, each of the three rows corresponds

to a different frequency, in terms of cycles per unit Gabor

window size, and each column corresponds to a different

direction of the sinusoids. The first column corresponds to the 0

radians direction — this is when the sinusoidal wave has crests

and valleys parallel the horizontal axis, which would be

perpendicular to how the texture is oriented in the image array.

The second column corresponds to an orientation of π/4, which

69

Texture and Color An RVL Tutorial by Avi Kak

again does not correspond to the orientation of the image

texture under test. However, the third column does correspond

to the sinusoids that have the same orientation as the image

texture. Finally, the last column is for the sinusoids that are

oriented at 3π/4 with respect to the i axis, which again does not

correspond to the image texture orientation.

• The fact that the third column has the highest values is

consistent with the orientation of the texture in the image.

• As for the frequencies, the frequencies we are looking for are at

2 cycle per window width in the first row, 4 cycles per window

width in the second row, and 6 cycles per window width in the

third row. Since Gabor window is 13 pixels on the side and the

image is 32 pixels on the side, and since we have alternating

high and low pixels in the image, we can expect the frequency

components to be relatively strong around 6 cycles per window

width. This is borne out by the results shown above.

• Let’s now see what happens to the output characterization of

the texture when we rotate the image by 90 degrees, as in the

array shown below:

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

70

Texture and Color An RVL Tutorial by Avi Kak

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

[5, 5]

[0, 0]

We now get the following output:

[4.3827198915, 2.80269825, 2.71851789, 2.802698256]

[7.5256355186, 0.11980902, 0.00350605, 0.119809025]

[7.0994088273, 0.00419626, 0.00116402, 0.004196268]

• In the output shown above, recall again that the first column for

the orientation of 0 radians with respect to the vertical, the

second for 45 degrees, the third for 90 degrees, and the last for

135 degrees, all with respect to the vertical and going

counter-clockwise. We see that the highest spectral energy is

now at 0 degrees which is consistent with the new orientation of

the texture.

• With regard to the rows shown above, the first row is for 2

cycles per window width, the second for 4 cycles per window

width, and the third for 6 cycles per window width. Since the

pattern of the alternations in the texture is the same as before

(albeit its new rotation), we again expect the maximum spectral

energy to be roughly around 6 cycles per window width. This is

borne out by the output shown above.

71

Texture and Color An RVL Tutorial by Avi Kak

• Finally, let’s examine the texture characterization for the

following 32× 32 random array of pixels:
[2, 3, 3, 0, 3, 0, 5, 5, 2, 0, 1, 4, 2, 2, 4, 2, 1, 4, 1, 1, 0, 4, 3, 3, 4, 1, 1, 2, 3, 2, 1, 1]

[2, 5, 5, 5, 5, 2, 2, 2, 2, 2, 1, 0, 5, 3, 0, 4, 4, 2, 0, 3, 1, 5, 0, 4, 5, 5, 4, 1, 1, 5, 0, 1]

[5, 0, 0, 3, 3, 5, 1, 0, 3, 5, 1, 1, 5, 3, 2, 4, 1, 1, 5, 3, 4, 1, 3, 1, 0, 4, 4, 5, 2, 3, 5, 3]

[0, 4, 1, 5, 5, 4, 5, 2, 0, 1, 0, 2, 0, 3, 2, 5, 1, 4, 1, 0, 3, 5, 1, 3, 2, 0, 4, 3, 5, 5, 3, 5]

[3, 1, 1, 0, 5, 5, 5, 2, 5, 1, 0, 0, 5, 1, 2, 1, 0, 3, 2, 4, 0, 1, 0, 3, 0, 1, 5, 1, 0, 2, 4, 0]

[0, 0, 4, 5, 1, 5, 4, 3, 4, 1, 3, 1, 0, 3, 4, 5, 0, 5, 4, 0, 1, 5, 2, 2, 5, 4, 3, 1, 5, 4, 5, 1]

[1, 3, 3, 2, 1, 2, 2, 2, 1, 3, 0, 5, 5, 2, 1, 3, 3, 2, 2, 2, 3, 5, 3, 3, 2, 3, 2, 2, 5, 1, 1, 0]

[3, 5, 3, 2, 4, 0, 2, 4, 1, 4, 0, 1, 4, 3, 0, 0, 1, 2, 5, 5, 4, 4, 5, 2, 5, 3, 5, 2, 0, 1, 2, 3]

[5, 3, 1, 3, 0, 4, 5, 4, 4, 2, 4, 0, 5, 5, 3, 2, 0, 4, 2, 4, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 0, 2]

[4, 3, 3, 2, 5, 2, 4, 0, 1, 4, 1, 2, 2, 5, 3, 5, 4, 1, 5, 2, 1, 3, 5, 4, 5, 5, 3, 0, 5, 2, 4, 5]

[0, 2, 0, 4, 0, 5, 0, 4, 0, 2, 5, 2, 2, 4, 0, 5, 5, 1, 0, 4, 5, 4, 5, 1, 4, 3, 5, 4, 2, 4, 1, 5]

[2, 0, 0, 5, 1, 0, 1, 3, 4, 3, 2, 4, 3, 4, 2, 5, 5, 0, 3, 0, 5, 3, 1, 5, 1, 0, 1, 0, 3, 4, 4, 3]

[3, 0, 0, 4, 1, 5, 3, 0, 2, 2, 5, 3, 3, 3, 4, 2, 5, 0, 1, 1, 0, 0, 2, 5, 0, 5, 4, 3, 5, 4, 2, 4]

[3, 2, 1, 3, 3, 2, 3, 2, 1, 2, 4, 2, 1, 2, 1, 3, 5, 0, 3, 2, 3, 2, 0, 3, 1, 3, 2, 4, 3, 4, 1, 1]

[4, 5, 3, 2, 3, 2, 1, 2, 0, 1, 0, 0, 1, 1, 4, 0, 1, 0, 3, 3, 4, 1, 4, 0, 2, 0, 4, 0, 2, 3, 0, 5]

[2, 1, 5, 4, 0, 1, 3, 1, 3, 2, 4, 3, 5, 4, 1, 3, 3, 4, 3, 4, 0, 5, 1, 4, 2, 5, 3, 4, 3, 5, 5, 0]

[5, 2, 3, 4, 0, 0, 2, 0, 4, 0, 1, 2, 2, 2, 3, 1, 1, 0, 1, 4, 1, 1, 4, 3, 0, 2, 3, 3, 5, 0, 4, 2]

[4, 4, 5, 3, 3, 4, 5, 1, 2, 3, 5, 5, 3, 0, 5, 0, 1, 5, 0, 5, 1, 4, 2, 3, 4, 4, 0, 0, 3, 2, 3, 3]

[3, 3, 0, 1, 1, 4, 4, 5, 5, 5, 1, 1, 3, 3, 2, 3, 2, 0, 1, 3, 0, 1, 0, 5, 2, 3, 4, 0, 3, 0, 0, 4]

[4, 5, 1, 5, 3, 2, 0, 5, 0, 4, 4, 2, 5, 5, 5, 3, 5, 4, 2, 0, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 0, 0]

[1, 1, 0, 1, 1, 0, 3, 1, 3, 3, 1, 5, 5, 4, 0, 1, 1, 5, 4, 1, 2, 0, 2, 3, 2, 1, 4, 0, 5, 3, 2, 2]

[4, 4, 3, 0, 0, 0, 1, 1, 0, 3, 0, 4, 2, 0, 0, 0, 3, 1, 1, 2, 0, 5, 5, 3, 4, 3, 1, 1, 4, 1, 4, 2]

[5, 5, 5, 4, 5, 5, 5, 1, 5, 5, 4, 3, 2, 1, 3, 3, 2, 3, 0, 3, 5, 4, 3, 0, 0, 1, 4, 4, 2, 2, 5, 2]

[0, 4, 3, 4, 3, 0, 0, 1, 3, 5, 5, 1, 4, 5, 2, 0, 0, 3, 3, 5, 1, 3, 0, 3, 3, 5, 5, 1, 2, 5, 5, 2]

[2, 5, 4, 4, 0, 3, 4, 1, 0, 3, 1, 4, 2, 3, 4, 3, 1, 1, 0, 1, 2, 3, 5, 0, 0, 0, 5, 3, 0, 5, 0, 1]

[5, 0, 5, 5, 1, 4, 4, 1, 0, 1, 0, 1, 3, 1, 1, 1, 1, 2, 5, 4, 0, 0, 4, 4, 5, 4, 2, 0, 4, 0, 1, 1]

[2, 5, 0, 0, 1, 4, 3, 2, 5, 5, 3, 0, 3, 0, 1, 3, 3, 1, 0, 2, 5, 1, 3, 1, 5, 0, 3, 5, 3, 5, 0, 5]

[3, 1, 3, 2, 0, 3, 1, 4, 5, 1, 2, 4, 5, 3, 4, 0, 4, 2, 2, 3, 3, 0, 1, 5, 3, 1, 2, 0, 5, 0, 3, 5]

[4, 3, 1, 5, 2, 1, 4, 5, 4, 3, 0, 5, 3, 2, 0, 0, 4, 0, 5, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 2, 4, 1]

[3, 4, 3, 0, 3, 1, 3, 2, 5, 4, 1, 1, 2, 1, 3, 4, 3, 1, 1, 1, 5, 3, 0, 2, 4, 0, 1, 0, 4, 3, 2, 5]

[4, 3, 1, 1, 0, 5, 0, 1, 0, 4, 0, 0, 4, 5, 5, 5, 2, 1, 0, 0, 3, 0, 4, 4, 0, 4, 2, 0, 1, 3, 0, 1]

[2, 1, 1, 4, 3, 4, 0, 0, 5, 1, 3, 4, 2, 3, 2, 1, 1, 5, 5, 0, 1, 4, 5, 4, 0, 0, 0, 1, 1, 0, 5, 4]

The characterization for the array shown above consists of the

following matrix:

[3.037470073, 3.01976483, 2.92454278, 2.98770835]

[1.632409589, 1.40793174, 1.51748497, 1.49434399]

[1.509071087, 1.43654545, 1.24886371, 1.69980807]

• About the output shown above, note first that the

characterization now appears to be orientation independent.

Recall again that the columns represent the orientation of the

filter, with the first column representing 0 degrees and the last

135 degrees with respect to the vertical.

• With regard to the rows shown above, which represent the

frequencies, we have more or less uniform energy in the

frequencies at 4 and 6 cycles per window length in the second

and the third rows, and elevated energies at 2 cycles per

72

Texture and Color An RVL Tutorial by Avi Kak

sequence length in the first row. This would be general pattern

you would see in a non-zero-mean image array — most of the

spectral energy would be focused towards the lowest frequencies.

73

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

5.3: Python Code for Experimenting with Gabor

Filter Banks

All of the Gabor based results shown earlier were produced by the

Python script shown below.

The script generates elementary textures for you and applies Gabor

filter bank to the image array. You can specify the texture you

want by uncommenting one of lines in (A4) through (A8).

The script allows you to set any arbitrary size for the image array

and the number of grayscale values you want in the image.

Note that you must also set the size of the Gabor σ and the size of

the convolutional operator in lines (A29) and (A30).

#!/usr/bin/env python

Gabor.py

Author: Avi Kak (kak@purdue.edu)

Date: October 15, 2016

bugfix and changes on January 21, 2018:

##

See the fix in Line (E7) that was needed to make the code work with the more recent

Pillow library for PIL.

##

Additionally, the code should now be Python 3 compliant.

This script was written as a teaching aid for the lecture on "Textures and Color" as

a part of my class on Computer Vision at Purdue.

##

This Python script demonstrates how Gabor Filtering can be used for characterizing

image textures.

Just for the sake of playing with the code, this script generates five different types

74

Texture and Color An RVL Tutorial by Avi Kak

of "textures". You make the choice by uncommenting one of the statements in lines

(A4) through (A8). You can also set the size of the image array and number of grayscale

values to use in lines in lines (A9) and (A10)

HOW TO USE THIS SCRIPT:

##

1. Specify the texture type you want by uncommenting one of the lines (A4) through (A8)

##

2. Set the image size in line (A9)

##

3. Set the number of gray levels in line (A10)

##

4. Set the size of the Gabor sigma in line (A29)

##

5. Set the size of the Gabor convolutional operator in line (A30).

Call syntax: Gabor.py

import random

import math

import sys, glob, os

if sys.version_info[0] == 3:

import tkinter as Tkinter

from tkinter.constants import *

else:

import Tkinter

from Tkconstants import *

from PIL import Image

from PIL import ImageDraw

from PIL import ImageTk

import functools

debug = True #(A1)

def main(): #(A2)

if debug: #(A3)

UNCOMMENT THE TEXTURE TYPE YOU WANT:

texture_type = ’random’ #(A4)

texture_type = ’vertical’ #(A5)

texture_type = ’horizontal’ #(A6)

texture_type = ’checkerboard’ #(A7)

texture_type = None #(A8)

IMAGE_SIZE = 32 #(A9)

GRAY_LEVELS = 6 #(A10)

image = [[0 for _ in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(A11)

if texture_type == ’random’: #(A12)

image = [[random.randint(0,GRAY_LEVELS-1)

for _ in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(A13)

elif texture_type == ’diagonal’: #(A14)

image = [[GRAY_LEVELS - 1 if (i+j)%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(A15)

elif texture_type == ’vertical’: #(A16)

image = [[GRAY_LEVELS - 1 if i%2 == 0 else 0

for i in range(IMAGE_SIZE)] for _ in range(IMAGE_SIZE)] #(A17)

75

Texture and Color An RVL Tutorial by Avi Kak

elif texture_type == ’horizontal’: #(A18)

image = [[GRAY_LEVELS - 1 if j%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(A19)

elif texture_type == ’checkerboard’: #(A20)

image = [[GRAY_LEVELS - 1 if (i+j+1)%2 == 0 else 0

for i in range(IMAGE_SIZE)] for j in range(IMAGE_SIZE)] #(A21)

else: #(A22)

sys.exit("You must satisfy a texture type by uncommenting one" +

"of lines (A1) through (A5).") #(A23)

print("Texture type chosen: %s" % texture_type) #(A24)

print("The image: ") #(A25)

for row in range(IMAGE_SIZE): print(image[row]) #(A26)

else: #(A27)

sys.exit("Code for actual images goes here. Yet to be coded.") #(A28)

gabor_sigma = 2.0 #(A29)

gabor_size = 13 # must be odd #(A30)

assert gabor_size % 2 == 1, "\n\nGabor filter size needs to be odd" #(A31)

rowmin = colmin = gabor_size//2 #(A32)

rowmax = colmax = IMAGE_SIZE - gabor_size//2 #(A33)

how_many_frequencies = 4 #(A34)

how_many_directions = 4 #(A35)

gabor_filter_bank = generate_filter_bank(gabor_sigma, gabor_size,

how_many_frequencies, how_many_directions) #(A36)

directory_name = "filters" + str(gabor_size) #(A37)

if os.path.isdir(directory_name): #(A38)

list(map(os.remove, glob.glob(directory_name + ’/*.jpg’))) #(A39)

else: #(A40)

os.mkdir(directory_name) #(A41)

for item in glob.glob(directory_name + "/*"): os.remove(item) #(A42)

filter_outputs = [[0.0 for _ in range(how_many_directions)]

for _ in range(how_many_frequencies)] #(A43)

for freq in range(1,how_many_frequencies): #(A44)

for direc in range(how_many_directions): #(A45)

print("\n\nfilter for freq=%d and direction=%d:" % (freq,direc)) #(A46)

print("\nop_real:") #(A47)

op_real,op_imag = gabor_filter_bank[freq][direc] #(A48)

display_gabor(op_real) #(A49)

display_and_save_gabor_as_image(op_real,directory_name,

"real_freq=%d_direc=%d"%(freq,direc)) #(A50)

print("\nop_imag:") #(A51)

display_gabor(op_imag) #(A52)

display_and_save_gabor_as_image(op_imag,directory_name,

"imag_freq=%d_direc=%d"%(freq,direc)) #(A53)

for i in range(rowmin,rowmax): #(A54)

for j in range(colmin,colmax): #(A55)

if debug: print("\n\nFor new pixel at (%d,%d):" % (i,j)) #(A56)

real_part,imag_part = 0.0,0.0 #(A57)

for k in range(-(gabor_size//2), gabor_size//2+1): #(A58)

for l in range(-(gabor_size//2), gabor_size//2+1): #(A59)

real_part += \

image[i-(gabor_size//2)+k][j-(gabor_size//2)+l] * \

op_real[-(gabor_size//2)+k][-(gabor_size//2)+l] #(A60)

imag_part += \

image[i-(gabor_size//2)+k][j-(gabor_size//2)+l] * \

76

Texture and Color An RVL Tutorial by Avi Kak

op_imag[-(gabor_size//2)+k][-(gabor_size//2)+l] #(A61)

filter_outputs[freq][direc] += \

math.sqrt(real_part**2 + imag_part**2) #(A62)

filter_outputs = list(map(lambda x: x / (1.0*(rowmax-rowmin)*(colmax-colmin)),

filter_outputs[freq]) for freq in range(1,how_many_frequencies)) #(A63)

print("\nGabor filter output:\n") #(A64)

for freq in range(len(filter_outputs)): print(list(filter_outputs[freq])) #(A65)

def gabor(sigma, theta, f, size): #(B1)

assert size >= 6 * sigma, \

"\n\nThe size of the Gabor operator must be at least 6 times sigma" #(B2)

W = size # Gabor operator Window width #(B3)

coef = 1.0 / (math.sqrt(math.pi) * sigma) #(B4)

ivals = range(-(W//2), W//2+1) #(B5)

jvals = range(-(W//2), W//2+1) #(B6)

greal = [[0.0 for _ in jvals] for _ in ivals] #(B7)

gimag = [[0.0 for _ in jvals] for _ in ivals] #(B8)

energy = 0.0 #(B9)

for i in ivals: #(B10)

for j in jvals: #(B11)

greal[i][j] = coef * math.exp(-((i**2 + j**2)/(2.0*sigma**2))) *\

math.cos(2*math.pi*(f/(1.0*W))*(i*math.cos(theta) +

j * math.sin(theta))) #(B12)

gimag[i][j] = coef * math.exp(-((i**2 + j**2)/(2.0*sigma**2))) *\

math.sin(2*math.pi*(f/(1.0*W))*(i*math.cos(theta) +

j * math.sin(theta))) #(B13)

energy += greal[i][j] ** 2 + gimag[i][j] ** 2 #(B14)

normalizer_r = functools.reduce(lambda x,y: x + sum(y), greal, 0) #(B15)

normalizer_i = functools.reduce(lambda x,y: x + sum(y), gimag, 0) #(B16)

print("\nnormalizer for the real part: %f" % normalizer_r) #(B17)

print("normalizer for the imaginary part: %.10f" % normalizer_i) #(B18)

print("energy: %f" % energy) #(B19)

return (greal, gimag) #(B20)

def generate_filter_bank(sigma, size, how_many_frequencies,

how_many_directions): #(C1)

filter_bank = {f : {d : None for d in range(how_many_directions)}

for f in range(how_many_frequencies)} #(C2)

for freq in range(1,how_many_frequencies): #(C3)

for direc in range(how_many_directions): #(C4)

filter_bank[freq][direc] = \

gabor(sigma, direc*math.pi/how_many_directions, 2*freq, size) #(C5)

return filter_bank #(C6)

def display_gabor(oper): #(D1)

height,width = len(oper), len(oper[0]) #(D2)

for row in range(-(height//2), height//2+1): #(D3)

sys.stdout.write("\n")

for col in range(-(width//2), width//2+1): #(D4)

sys.stdout.write("%5.2f" % oper[row][col])

sys.stdout.write("\n")

def display_and_save_gabor_as_image(oper, directory_name, what_type): #(E1)

height,width = len(oper), len(oper[0]) #(E2)

maxVal = max(list(map(max, oper))) #(E3)

77

Texture and Color An RVL Tutorial by Avi Kak

minVal = min(list(map(min, oper))) #(E4)

print("maxVal: %f" % maxVal) #(E5)

print("minVal: %f" % minVal) #(E6)

newimage = Image.new("L", (width,height), 0.0) #(E7)

newimage = Image.new("L", (width,height), 0) #(E7)

for i in range(-(height//2), height//2+1): #(E8)

for j in range(-(width//2),width//2+1): #(E9)

if abs(maxVal-minVal) > 0: #(E10)

displayVal = int((oper[i][j] - minVal) *

(255/(maxVal-minVal))) #(E11)

else: #(E12)

displayVal = 0 #(E13)

newimage.putpixel((j+width//2,i+height//2), displayVal) #(E14)

displayImage3(newimage,directory_name, what_type, what_type +

" (close window when done viewing)") #(E15)

def displayImage3(argimage, directory_name, what_type, title=""): #(F1)

’’’

Displays the argument image in its actual size. The display stays on until the

user closes the window. If you want a display that automatically shuts off after

a certain number of seconds, use the method displayImage().

’’’

width,height = argimage.size #(F2)

tk = Tkinter.Tk() #(F3)

winsize_x,winsize_y = None,None #(F4)

screen_width,screen_height = \

tk.winfo_screenwidth(),tk.winfo_screenheight() #(F5)

if screen_width <= screen_height: #(F6)

winsize_x = int(0.5 * screen_width) #(F7)

winsize_y = int(winsize_x * (height * 1.0 / width)) #(F8)

else: #(F9)

winsize_y = int(0.5 * screen_height) #(F10)

winsize_x = int(winsize_y * (width * 1.0 / height)) #(F11)

display_image = argimage.resize((winsize_x,winsize_y), Image.ANTIALIAS) #(F12)

image_name = directory_name + "/" + what_type #(F13)

display_image.save(image_name + ".jpg") #(F14)

tk.title(title) #(F15)

frame = Tkinter.Frame(tk, relief=RIDGE, borderwidth=2) #(F16)

frame.pack(fill=BOTH,expand=1) #(F17)

photo_image = ImageTk.PhotoImage(display_image) #(F18)

label = Tkinter.Label(frame, image=photo_image) #(F19)

label.pack(fill=X, expand=1) #(F20)

tk.mainloop() #(F21)

main() #(G1)

78

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

6: Deep Learning and Image Textures

• In the context of deep learning, perhaps the most significant

work in understanding, analyzing, and synthesizing textures has

occurred in solving the problem of style transfer.

• Style transfer involves two images and it means to transfer the

style of one image to the content of the other image. The

notion of style of best understood as grayscale and color

variations that could be construed as a general texture in the

image. It is possible for an image to consist of just such a

texture, or for there to be the texture as a background or in

addition to the more meaningful “objects” in the image. The

former is shown at left and the latter at right. The image on the

right features mostly a large brick building along with small

portions of the other buildings on the two sides of the large

building. It also shows trees and bushes in front of the

buildings. You may think of the trees and the buildings as

providing the texture and the buildings the content.

79

Texture and Color An RVL Tutorial by Avi Kak

• For the above example images, the goal of style transfer would

be to create a new version of the content image on the right

that has the texture flourishes that look like those in the style

image on the left.

• For a neural network to transfer the style from one image to

another, it must learn the style in the former. That leads to the

following questions: How do you make a neural network aware

of style? And, how to transfer style from one image to another?

• In the next two subsections, I will present two different solutions

to the questions posed above. For its great historical

importance and because it showed the power of Gram Matrices

for texture characterization in a neural network, I will present in

the next subsection the framework that was proposed by Getys

et al. in 2016. In a subsequent subsection, I’ll present a more

modern approach to texture characterization and style transfer

that is based on exploiting the expressive power of channel-wise

normalization parameters.

80

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

6.1: Gram Matrices for Texture Characterization in

Neural Networks

• The first publication that provided definitive answers to the

question of how to characterize textures in neural networks and

how to then transfer them to other images was the paper

“Image Style Transfer Using Convolutional Neural Networks”

by Getys, Ecker, and Bethge in 2016:

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

• The two main ideas in the Getys et al. paper are:

1. Using Gram Matrices for a statistical characterization of the

textures during learning;

2. Using the minimization of content loss and style loss in an

iterative framework for transferring the style from one image

to another. These losses are estimated in the layers of a

pre-trained VGG19 network and the iterative optimization

carried out in a separate loss network.

• To explain these ideas further, you need to know that VGG19 is

a famous image classification network that was trained with

81

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Texture and Color An RVL Tutorial by Avi Kak

over a million ImageNet images in 2014. It is described in the

paper “Very Deep Convolutional Networks for Large-Scale

Image Recognition” by Simonyan and Zisserman that you can

download from:

https://arxiv.org/abs/1409.1556v6

• The figure shown below is a convenient visualization of the

VGG19 network architecture.

Figure 3: VGG19 Visualization, from: https://www.researchgate.net/figure/Illustration-of-fine-tuned-VGG19-pre-trained-CNN-model_fig1_342815128

• As its name implies, VGG19 consists of a total of 19 layers, the

first 16 of which are convolutional and the last 3 fully

82

https://arxiv.org/abs/1409.1556v6
https://www.researchgate.net/figure/Illustration-of-fine-tuned-VGG19-pre-trained-CNN-model_fig1_342815128

Texture and Color An RVL Tutorial by Avi Kak

connected. Since the purpose of the 3 full-connected layers is to

reshape the forward propagating information for allowing

classification judgments to be made at the final output, they are

ignored for the purpose at hand — texture characterization.

• Since VGG19 was trained on a very large dataset consisting of

over a million images, one can assume that its learnable weights

must be sensitive to a very large variety of pixel color variations

— including those that may be construed as style or textures.

What that implies is that if the input to the VGG19 network

consists of a texture image, the output of each layer in the

network should contain information related to those textures.

The challenge then becomes one of characterizing those textures.

• Since texture are best characterized statistically, is there any

way in a neural network to subject all of the pixel values at the

output of each layer to a statistical measurement? We need to

do this for different possible layers so that texture effects in the

input image can be captured at different scales. As you know, if

a typical neural network, you reduce size of the image as you go

from layer to layer (from groups of layers to groups of layers)

and do so without losing information by throwing the inter-pixel

information into the channel dimension.

• Any method that does the sort of statistical characterization

mentioned above must be implementable within the overall

learning framework of a neural network. For best results, it

83

Texture and Color An RVL Tutorial by Avi Kak

must also be implementable in a GPU with the functionality

provided by a deep-learning platform such as PyTorch.

• Getys et al. proposed the use of Gram matrices for the

layer-based characterization of the textures in a neural network.

Given an m× n matrix A of real-valued numbers, its Gram

matrix is given by the n× n matrix G = ATA. Obviously, the

(i, j)th element of the Gram matrix G is a dot-product of the ith

column vector of A with its jth column vector.

• If we assume that the m-dimensional column vectors of the

matrix A are white-noise vectors (meaning that the elements of

the vector are zero-mean and with finite-variance and that the

different components of the vector are statistically

uncorrelated), the Gram matrix G of A will be a purely

diagonal matrix. This is just to point out that the Gram matrix

tells us about how the column vectors of A are correlated with

one another. In our context, these correlations will depend on

the texture in the input image. Should the texture in the input

image be very busy to the point of being noise-like, most of the

nonzero entries in G will be close to the diagonal. However, as

the granularity of the texture becomes coarser, the non-zero

values in G will propagate out farther from the diagonal.

• To see how the idea of a Gram matrix can be applied to the

pixels flowing through a neural network, Figure 4 depicts the

output image produced by a single layer indexed l of a neural

84

Texture and Color An RVL Tutorial by Avi Kak

network. This image data consists of Nl channels. Note that a

channel is also called a feature map.
[By the way, each layer in a neural network is “delimited” by what’s known as the activation
function. Without such activation functions, the entire neural network would reduce to
subjecting the input data to a large vector-matrix product.]

Figure 4: This figure depicts the output from each layer of a typical neural network meant
for processing images. The output consists of a certain number of channels. As shown here,
for the layer indexed l, the output data consists of Nl channels. Since the input to each layer
is the output from the previous layer, the layer inputs possess the same shape as shown in
the figure, except that the image dimensions and the number of channels will be different for
the input and the output. When the input consists of color images, the number of channels
in the input at the first layer, meaning the layer indexed l = 0, equals 3.

• Let’s now focus on a pixel in one the channels at the output in

the lth layer — in the figure the pixel happens to be on the last

channel of the output image. We could represent this pixel by

xmn since it is in the mth row and nth column of the channel.

But that notation is not sufficient since it gives no clue as to

what channel the pixel is in and also no clue regarding the layer

85

Texture and Color An RVL Tutorial by Avi Kak

index. A more complete notation for the pixel would be the

more cumbersome xl,kmn to indicate that the pixel is in the kth

channel of the lth layer. This amounts to saying that a pixel x is

a real-valued number in a 4D Cartesian Product space defined

by L×Nl ×Hl ×Wl, where L is the total number of layers in

the network, Nl is the number of channels in layer l, and

(Hl,Wl) the height and width of the image in the lth layer. In

shorthand, we have x ∈ RL×Nl×Hl×Wl .

• In order to directly invoke the concept of a Gram matrix on the

pixel data in the different channels of the image data in a layer,

it is best to represent all the pixels in a given channel in the

form of a single vector Fl. To indicate that we are talking about

a specific channel k in the layer, we can express that fact by the

notation Fl
k. And if we want to access the pixel at the

coordinates (m,n) in the channel, we would first need to

convert the (m,n) coordinates into a 1D index denoted by, say,

j, and then use the notation Fl
k,j to represent that pixel.

• Obviously, Fl ∈ RNl×Ml where, as mentioned earlier, Nl is the

number of channels in the lth layer and Ml = Hl ×Wl the total

number of pixels in each channel of the layer. In the vector

representation of the channels of a layer, each vector has Ml

elements.

• F l is in effect a matrix of shape Nl ×Ml whose rows represent

the individual channels in the layer. The number of columns is

86

Texture and Color An RVL Tutorial by Avi Kak

equal to the number of pixels in each channel.

• With the matrix representation F l for the lth layer, we are

ready to define the Gram matrix Gl for the layer as

Gl = F l · F lT

Gl
ij =

Ml−1
∑

k=0

Fi,k · Fj,k (27)

• Note that the Gram matrix Gl for the layer indexed l is a 2D

array of size Nl ×Nl of floating point values. The

(i, j)th-element of this array is a dot-product of the ith channel

image with the jth channel image in layer l, with both images

being treated as vectors. The weaker the correlation between

the pixels in the ith and the jth channels, the more likely that

the dot product of the corresponding images will be zero.

• Now we have all the notation to explain the Getys et al.

framework shown in Figure 4 for style transfer. Shown at left in

the figure is a style image ~a being pushed through the VGG19

network. The Getys framework calculates the Gram matrices A

for texture characterizations of the image ~a just before

MaxPooling is applied at the end each group of convolutional

layers.

87

Texture and Color An RVL Tutorial by Avi Kak

Figure 5: The Getys et al. framework for style transfer. Source:
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Figure 6: A style transfer result produced by the Getys et al. framework.

88

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Texture and Color An RVL Tutorial by Avi Kak

• The content image ~p also goes through the VGG19 network as

shown at right in the figure, except that now we have no need to

compute its Gram matrices. For the content layer that is

deemed important for content preservation in the final result,

we calculate the content loss between the channel images (the

content feature maps) on the content side and the

corresponding feature maps in the Loss Network that you see in

the middle of the framework. The Loss Network in the middle is

just another VGG19 network.

• Pay attention to how the Style Loss is calculated. It is a

summation over the style losses in the individual layers of the

network at left vis-a-vis the values of the Gram matrices in the

Loss Network in the middle.

• Shown in Figure 5 is one of style transfer results in the Getys et

al. paper.

89

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

6.2: Texture Characterization with Channel

Normalization Parameters

• It will be difficult for you to understand what I have presented

in this section unless you have some prior exposure to the

material presented in the following lecture of our Deep Learning

class:

https://engineering.purdue.edu/DeepLearn/pdf-kak/SkipConsAndBN.pdf

This material addresses the data normalization strategies in

neural networks for mitigating the serious problem of vanishing

gradients problem with such networks. Each layer in a neural

network ends in the application of a nonlinear activation

function. For improving the performance of a network, one

must normalize the data prior to invoking the activation.
[Besides mitigating the adverse effects of vanishing gradients, data normalization can speed up
the learning process and act as a regularizer to improve the quality of stochastic gradient
descent that’s the basis of neural learning.]

• Today we have available to us several different strategies

available for data normalization: (1) Batch Normalization (BN);

(2) Instance Normalization (IN); and (3) Layer Normalization

(LN). The goal of the normalization algorithms is to make the

data zero-mean and unit variance but only to the extent

allowed by the minimization of loss. Without the constraint

in italics, data normalization would be trivial — you first find

90

https://engineering.purdue.edu/DeepLearn/pdf-kak/SkipConsAndBN.pdf

Texture and Color An RVL Tutorial by Avi Kak

the mean and the standard deviation in the data, you subtract

the mean, and divide by the standard deviation. However, it is

critical to honor the said constraint.

• For example, BN computes the mean µc and the standard-

deviation σc of the pixel values separately in each channel

indexed c:
[As for the meaning associated with the different symbols in the two formulas, B stands for a
batch of images coursing together through a network, C is the number of channels at the
output of the layer, and (H,W) are the height and width of the image. The notation xnchw

represents the value of the pixel at the coordinates (h,w) in the channel indexed c in the batch
image indexed n.]

µc =
1

BHW

B
∑

n=1

H
∑

h=1

W
∑

w=1

xnchw (28)

σc =

√

√

√

√

1

BHW

B
∑

n=1

H
∑

h=1

W
∑

w=1

(xnchw − µc)
2 + ǫ (29)

• In the second formula, a small number ǫ is added to protect

against division by zero in the formula shown below for the case

when the data in a channel is all constants.

• Batch normalization means replacing every pixel value xnchw in

a channel c by the following value:

BN(xnchw) = γc ·
xnchw − µc

σc

+ βc (30)

• The parameters γc and βc are referred to as the scale and the

shift parameters for the channel in question. More generally,

91

Texture and Color An RVL Tutorial by Avi Kak

they are together called the the affine parameters that must be

learned on a per channel basis in each layer that uses BN.

• Instance Normalization (IN), on the other hand, requires that

the per-channel normalization be limited to each instance in a

batch. So the new formulas for calculating the mean and the

standard deviation in each channel become:

µcn =
1

HW

H
∑

h=1

W
∑

w=1

xnchw (31)

σcn =

√

√

√

√

1

HW

H
∑

h=1

W
∑

w=1

(xnchw − µcn)
2 + ǫ (32)

• These formulas imply that in each channel you have to keep

track of the mean and the standard deviation for each instance

index in a batch separately. Instance normalization means

replacing every pixel value xnchw in a channel c of the instance

n in a batch by the following value:

IN(xnchw) = γcn ·
xnchw − µcn

σcn

+ βcn (33)

Note that the affine parameters γcn and βcn for data

normalization are now learned on a per-instance basis in each

channel.

92

Texture and Color An RVL Tutorial by Avi Kak

• If you have understood the data normalization discussion so far,

you are all set to understand a beautiful research contribution

in the paper “Arbitrary Style Transfer in Real-time with

Adaptive Instance Normalization”by Huang and Belongie that

you can download from:

https://arxiv.org/pdf/1703.06868.pdf

This paper — commonly referred to as the “AdaIN” paper —

showed convincingly that style transfer could be carried out

much more easily and faster (compared to how it is described in

the Gety et al. paper) through the “cross-image” normalization

of each channel.

• To elaborate, you carry out instance normalization of the

channels as a content image is coursing its way through the

VGG19 network — but using the style-image mean and

standard-deviation for the affine parameters. The authors

referred to this as Adaptive Normalization (AdaIN).

• For AdaIN, we rewrite the IN formulas shown earlier as

AdaIN(xnchw, yc) = σy ·
xnchw − µcn

σcn

+ µyc (34)

• What’s interesting about this formula is that, unlike regular BN

or IN, it involves no learnable parameters. All that this

normalization seeks to achieve is to align the channel-wise mean

93

https://arxiv.org/pdf/1703.06868.pdf

Texture and Color An RVL Tutorial by Avi Kak

and variance for the content image to what it is for the style

image y.

• As to how AdaIN is actually implemented for style transfer,

shown below is the AdaIN network. To understand this

network, note first that the VGG Encoder consists of the first

few layers of the VGG19 network you have already seen. More

specifically, the AdaIN network uses the VGG layers up to the

“relu4 1” layer. The figure on the next page shows the naming

convention for the different components of the VGG19 network.

The part of the VGG19 network that is used for the AdaIN

encoder consists of the components in lines #1 through #22.

Figure 7: The AdaIN framework for style transfer. Source: https://arxiv.org/pdf/1703.06868.pdf

• About the VGG layer naming convention shown in Figure 7, a

name like conv i_j means the jth convolutional layer before

the ith pooling layer. In other words, it is the jth convolutional

layer for the ith scale. The same goes for the other components

94

https://arxiv.org/pdf/1703.06868.pdf

Texture and Color An RVL Tutorial by Avi Kak

Figure 8: The naming convention for the different components of the VGG19 network. From
https://www.mathworks.com/help/deeplearning/ref/vgg19.html

95

https://www.mathworks.com/help/deeplearning/ref/vgg19.html

Texture and Color An RVL Tutorial by Avi Kak

in that display. Since each pooling layer halves the size of the

image while doubling the “scope” of each pixel in the image,

you can consider it as a boundary between two different scales

at which the information is represented in the image data

flowing through the network.

• The Decoder in Figure 5 is a mirror reflection of the Encoder

except for the fact that the MaxPool layers (which successively

reduce the size of the image in the Encoder) are replaced by

upsampling layers (based on the nearest neighbor idea) since

the goal is to recover the original size of the input image from

the output of the Encoder. For reasons explained by the

authors, no data normalization is used in the Decoder.

• Shown below are the result for one of the several pairs of

content and style images in the AdaIN paper.

Figure 9: Comparative results from the AdaIN paper. “Ours” means the authors of the AdaIN paper.

• The AdaIN network shows that it is possible to carry out style

transfer just by normalizing the channel-wise mean and the

96

Texture and Color An RVL Tutorial by Avi Kak

variance in the content images to what it is in the style images.

97

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7: Dealing with Color in Images

• On the face of it, learning about color and how it should be

dealt with in images couldn’t be simpler. You could say that all

you need to know is that, typically, a color image is represented

by three 8-bit integers at each pixel, one for each of the red,

green, and blue channels. So one could think of a color image as

three separate grayscale images, one for each color channel.

• Unfortunately, it is not as simple as that.

• Let’s say you want to apply a segmentation algorithm to a color

image. Considering that you have three color values at each

pixel, you have to first decide what to apply the segmentation

algorithm to. Should you be applying it to each color channel

separately? Or should you base your segmentation on

something else entirely — perhaps an attribute that could be

inferred from the color channels? [Along the same lines, suppose you want to

characterize the texture in a color image. Should you be applying the texture characterization

algorithm to each color channel separately? If you do, how would you combine the three

characterizations? Yes, one could possibly “concatenate” the three characterizations. But might there

be other ways to represent color images so that such a concatenation would become unnecessary?]

• If you are an individual who knows a bit about art, your

98

Texture and Color An RVL Tutorial by Avi Kak

reaction to the comments made above is likely to be: It has

been known for centuries that the human experience of color is

based primarily on its hue, saturation, and brightness, and, not

at all on the RGB color components per se. So you will say why

not represent a color directly by its hue, saturation, and

brightness attributes? [By the way, one of the acronyms, HSI, HSV, or HSL, is likely to be

used for the representation of color when you are working directly with hue (H), saturation (S), and

brightness (I/V/L), where I stands for intensity, V for value, and L for lightness.]

• As it turns out, in order to become competent with color in

images, you really have no choice but to learn all of the different

ways in which color can be represented. You obviously need to

know about RGB since that is important to how hardware

records and displays images. In addition, you must also learn

the HSI/V/L representations, since these are used extensively in

software systems when it is important create effects that are

important to the human experience of color. And if you are

trying to come to terms with the nonlinear aspects of color

vision, you must also understand the L*a*b* representation of

color. [In the L*a*b* representation, L* represents lightness (conceptually the same thing as

brightness), a* the red-green value, and b* the yellow-blue value. See the explanation under “Opponent Color

Spaces” in Section 6.3 of this tutorial for what is meant by “red-green” and “yellow-blue” values. The

L*a*b* space has become very important for the purpose of data visualization. It is now well

known that the changes in data are best visualized if they correspond to proportional changes in the L* value

in the color graphic used for visualization.]

• Just to give you a simple example of how certain computer

99

Texture and Color An RVL Tutorial by Avi Kak

vision operations become simpler when you operate in the HSV

color space, as opposed to the RGB color space, our goal

vis-a-vis the RGB image on the left in Figure 10 is to segment

out the fruitlets. The segmentation on the right was carried out

in the HSV color space by accepting all pixels whose hue values

are between 0◦ and 30◦. You will learn later why hue is

measured in degrees.

Figure 10: The goal here is to segment out the fruitlets from the

image on the left. The segmentation shown at right is based on just
hue filtering. We accept all pixels whose hue values are between 0◦

and 30◦. The image at left was supplied by Dr. Peter Hirst, Professor
of Horticulture, Purdue University. The segmentation result shown

was obtained by invoking the function apply color filter hsv()

of my Python based Watershed module.

100

https://engineering.purdue.edu/kak/distWatershed

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.1: What Makes Learning About Color So

Frustrating

• Human perception of color is so complex and so nonlinear that

it cannot be described fully by any single computational model

— certainly not by any single linear model.

• Considering the nonlinearities involved, it is indeed amazing

how much mileage we have gotten out of the RGB and the

closely related HSI, HSV, HSL, etc., models. All these models

can be thought of as linear approximations to a nonlinear

phenomenon. [For an example of the nonlinearity of our color vision: When you darken the color

orange, you get the color brown. However, when you darken the color blue, it remains

blue.] Attempts at coping with the nonlinear aspects of color

vision have resulted in color spaces such as L*a*b*. These color

spaces are based on the Opponent Color Modeling of our color

vision. On the other hand, RGB, HSI/V/L, etc., are based on

the Trichromatic Model of our color vision.

• In addition to having to deal with the above mentioned

modeling complexities, what makes learning about color so

frustrating for an engineer are the nature of approximations

that go into the computational models. Here is a case in point:

You will see frequent references to the RGB cube for the

101

Texture and Color An RVL Tutorial by Avi Kak

representation of color. This representation obviously implies

that the R, G, and B components of color are orthogonal in

some sense. But are they really orthogonal in any sense at all?

• As it turns out, we assume the RGB cube to be orthogonal

because that makes it easier to derive formulas for

transformation between different types of color spaces. This

assumption also makes it easier to visualize the three primary

color components (R, G, and B) when talking about colors.

However, as you will see later on in this tutorial, in a more

“absolute” representation of color — known as the X,Y,Z space

— the RGB representation is definitely non-orthogonal.

• Once you realize that the orthogonality of the RGB cube is

really just for convenience, you are left to wonder how much

trust you should place in the color-space transformation

formulas that are based on tilting the cube in a vector space

and then deriving equations for hue, saturation, and intensity

from the tilted cube. [You even wonder as to why you should believe that the colors on the

surface of the tilted cube are the purest (meaning the most saturated) hues.]

• If you are an engineer trying to understand color, another

challenge you face is wrapping your head around what are

known as spectral colors. These are colors that would be

produced by, say, a tunable laser. You quickly find out that

spectral colors are just a very small subset of all the colors that

humans are capable of experiencing. In general, the hue

102

Texture and Color An RVL Tutorial by Avi Kak

attribute of the human experience of color is based as much on

the shape of the spectrum of wavelengths in the light incident

on the eye as it does on the individual frequencies, but you

never get a good sense of precise nature of this dependence. [If

we optically combine the light emitted from a pure red laser with the light emitted from a pure blue laser, a

human observer would perceive this combined light as magenta. On the other hand, if we could produce a

spectrally pure light at a wavelength halfway between blue and red, that light would not be perceived as

magenta. In other words, both the average wavelength and the shape of the spectral distribution are

important for characterizing hue.]

• Another source of frustration in learning about color is the

importance of ratios in almost every aspect of color. It is

generally believed that the sensation of color that we experience

is determined primarily by the proportion of each of the three

primary colors in the light incident on the eye. [These would generally be

the officially formulated X, Y, and Z components that are deemed to be abstract. These could also be the R,

G, and B components] As you will see later in this tutorial, this implies

that the experience of color is described mostly by the points on

a single plane inside an XYZ or the RGB cube. Presumably,

the colors on this plane are the different possible hues. But it is

not clear as to what extent folks such as artists would agree

with that. [On account of its importance, this plane is called the Chromaticity Plane. Since all

points on a plane possess only two degrees of freedom, everything conveyed by the chromaticity plane can

also be conveyed by its projection on either the XY, or the YZ, or the XZ plane. Such a projection is referred

to as the Chromatic Diagram.]

• Last but not the least is the great difficulty of making reliable

103

Texture and Color An RVL Tutorial by Avi Kak

measurements of color if the goal is for these measurements to

reflect the “true” colors of the object surfaces in a scene.

• The color that is captured by a camera depends significantly on

three factors: (1) the spectral composition of the illumination;

and (2) the light reflection properties of the object surfaces

(some surfaces are more specularly reflecting and others more

diffuse); and (3) the “true” color of the object surface (which

depends on what portion of the light spectrum is absorbed by

the surface). If you are looking at a scene that you are very

familiar with, your brain will do a great job of compensating

for the confounding effects of these three effects. However, a

computer vision algorithm must deal with all of the

complexities created by these effects. The guidance

that the literature offers on how to address these effects is

entirely much too ad hoc.

• Finally, here are some additional sources of frustration when

wrapping your head around the literature on color: The words

“color” and “hue” are often used interchangeably, especially in

explanations of what is depicted by Chromaticity Planes and

Chromaticity Diagrams. Whereas the word “chroma” in the

context of HSV and HSL spaces stands for basically the same

thing as saturation, the closely related word “chromaticity” is

more about depicting hues than saturation.

• If one had to seek a simpleminded reason for why mastering the

104

Texture and Color An RVL Tutorial by Avi Kak

subject of color has become so frustrating, one could say that

we have three different communities of researchers and

developers, each pursuing color in its own way:

– Hardware engineers: These are folks charged with pushing the state
of the art in the fabrication of RGB based sensors that go into

cameras and other devices. For a lot of them, their principal focus is
on improving the spatial resolution of the sensors. They are proud

of the fact that their devices can give you as many as
256 ∗ 256 ∗ 256 = 1, 677, 256 colors, and they are truly perplexed by
humans wanting more. [This number is based on using 8-bits for each of the so-called

primary colors, R, G, and B]

– Physicists and optics engineers: Spectral properties of color are their
main obsession. If a color cannot be represented by a fusion of three
different spectra, then they are not so interested in it. The XYZ

space and the subspaces derived from it are their primary medium
for dealing with color.

– Computer graphics and data visualization engineers: They need to
connect what the hardware is capable of delivering with their best

understanding of how the humans experience color. HSI/V/L spaces
are their representational tools of choice for color. [Unfortunately, the

HSI/V/L spaces are linearly related to the RGB space, as you will see later in this tutorial. What that

implies is that many of the fundamental limitations of the RGB representation also apply to HSI/V/L

representations.]

• It’s almost like the parable of the six blind men and the

elephant.

• My comments about the three different communities pursuing

105

Texture and Color An RVL Tutorial by Avi Kak

color in their own way should also give you a clue as to why a

company like Tiffany can register its famous color known as

“Tiffany Blue”. Its Wikipedia page will show you what this

color is in all the different color spaces and yet it is not exactly

any of them. What you see in your web browser for “Tiffany

Blue” is a color that is both a function of what it actually is and

how the browser is able to display that color. [To really experience “Tiffany

Blue”, you have to receive one of their boxes or their hardcopy printed catalog. I see the catalog frequently

because my wife is on their mailing list — for reasons that should be obvious if you know what Tiffany is all

about.]

• If a color like the “Tiffany Blue” could be represented exactly

by, say, its RGB or HSI descriptors at the Wikipedia page,

registering the color as a trademark would amount to registering

the letter “a” of the alphabet and forbidding others from using

it in their writing.

• As to why some of the issues I have mentioned above are

frustrating will become clearer in the sections that follow.

• The color related discussion in the rest of this tutorial draws

significantly from the following sources:

1. Margaretha Schwarz, Lynne Grewe, and Avi Kak, “Representation of Color and
Segmentation of Color Images,” Purdue University Technical Report, 1-1-1994.
Paper 171, January 1994.
http://docs.lib.purdue.edu/ecetr/171

106

http://docs.lib.purdue.edu/ecetr/171

Texture and Color An RVL Tutorial by Avi Kak

2. Lynne Grewe and A. C. Kak, “ Interactive Learning of a Multi-Attribute Hash
Table Classifier for Fast Object Recognition,” Computer Vision and Image
Understanding, pp. 387-416, Vol. 61, No. 3, 1995.
https://engineering.purdue.edu/RVL/Publications/Grewe95Interactive.pdf

3. Jae Byung Park and Avinash C. Kak, “A New Color Representation for
Non-White Illumination Conditions,” Purdue University Technical Report,
6-1-2005, Paper 8, June 2005.
http://docs.lib.purdue.edu/ecetr/8

107

https://engineering.purdue.edu/RVL/Publications/Grewe95Interactive.pdf
http://docs.lib.purdue.edu/ecetr/8

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.2: Our Trichromatic Vision and the RGB Model of

Color

• Although hue, saturation, and brightness describe naturally the

different aspects of color sensation experienced by humans, they

are not always useful for designing engineering systems.

• From an engineering perspective, a more useful description of

color is inspired by the fact that the retina of the human eye

contains three different types of photo receptors, with each type

possessing a different spectral sensitivity pattern. [These photo

receptors are commonly called cone cells.] By spectral sensitivity pattern I

mean the response of a photo receptor to incoming

monochromatic light at different wavelengths. The fact that the

eye contains three different types of cone cells is referred to as

the trichromaticity property of the human visual system.

• The three spectral patterns — designated S, M, and L, which

stand for “Short”, “Medium”, and “Long” wavelengths — for

the three types of photo receptors are shown in Figure 11. [As

you can tell from the figure, these three spectral responses do not correspond to any

particular colors as we experience them. The L photo receptors are just as sensitive to

monochromatic green as to monochromatic yellow. The M photo receptors are

primarily sensitive to green, but their sensitivity to red is not insignificant. The S

108

Texture and Color An RVL Tutorial by Avi Kak

photo receptors are sensitive mostly to monochromatic blue. In the past, L, M, and S

photo receptors have been loosely associated with R (for red), G (for green), and B

(for blue).] The three spectral responses shown in the figure have

commonly been denoted hR(λ), hG(λ), and hB(λ) in the

literature.

Figure 11: The retina of the human eye contains three different types
of photo receptors for color vision. The spectral responses of the three

types are shown here. This figure is from the Wikipedia page on “Color
Vision”.

• Now assume for a moment that our goal is to design a vision

sensor that would help a backend processor perceive colors the

way the humans do. Ignoring for a moment what happens at

the higher levels in the brain, the trichromaticity of our visual

system would suggest that we try to embed in the sensor three

109

Texture and Color An RVL Tutorial by Avi Kak

optical filters whose spectral properties are the same as hR(λ),

hG(λ), and hB(λ). The three color values generated by such a

sensor would be

R =

∫

fill(λ)fref(λ)hR(λ)dλ

G =

∫

fill(λ)fref(λ)hG(λ)dλ

B =

∫

fill(λ)fref(λ)hB(λ)dλ (35)

where fill(λ) is the spectral composition of the illumination and

fref(λ) the spectral definition of the surface reflectivity in the

direction of the camera.

• Unfortunately, this logic for mimicking the human visual system

is not practical since it is not possible to create optical filters

with exactly the same spectral responses as for the three types

of cone cells in the retina. [And, even if we could, there would remain the issue of

mimicking what the human brain does with the RGB values thus generated — since the higher level

processing of color in the visual cortex of the brain remains largely a mystery.]

• Since it is not practical to design optical filters with the kinds of

responses shown in Figure 11 , approximations are necessary.

The common approximation consists of using filters with “single

line” responses for the three filters. [That typically means the R filter passes

through light at or in close vicinity to the 700 nm wavelength, the wavelength of the pure red hue.

110

Texture and Color An RVL Tutorial by Avi Kak

Similarly, the G filter passes through light at or in close vicinity to the 545 nm wavelength, the

wavelength of the pure green hue. And, the B filter passes through light at or in close vicinity to the

480 nm wavelength, the wavelength of the pure blue hue.] Mathematically, this

commonly used engineering approximation is tantamount to

saying that the filter functions hR(λ), hG(λ) and hB(λ) in Eq.

(27) are replaced by the Dirac Delta functions δ(λ− λR),

δ(λ− λG), and δ(λ− λB), respectively.

• The primary justification for the above mentioned

approximation — the approximation of using “single-line” filters

as opposed to the filters whose spectral responses would be akin

to those of the cone cells in our retina — goes like this: Say we

use a vision sensor based on the above approximation to

represent a given color by three numbers R, G, and B. Now

suppose we mix three spectrally pure light beams, one red, one

green, and one blue, in the same proportion as the numbers R,

G, and B. If a human observer were to see this composite beam,

the color experienced by the human would be roughly the same

as the color in the original light beam on the vision sensor. The

words most open to questioning in this justification are

proportion and roughly; the former implies using only two

degree of freedom in the synthesis of the composite beam and

the latter is open to any interpretation.

• Even if you accept the justification presented above and design

a hardware vision sensor with three “single-line” color filters for

the R, G, and B components, you’ll be faced with the following

111

Texture and Color An RVL Tutorial by Avi Kak

dilemma: There exist a number of spectrally pure colors

corresponding to different wavelengths that cannot be

synthesized by mixing pure R, G, and B components. This fact

is made evident by Figure 12 where it is shown how much red,

how much green, and how much blue must be mixed in order to

generate a spectrally pure color at a given wavelength. The

significance to be associated with the wavelength band where

the r̄(λ) function becomes negative is most interesting: No

spectrally pure color in this band can be produced by any

combination of red, green, and blue. The negative values for

r̄(λ) mean that if we were to combine the red hue in proportion

equal to the negative value of r̄(λ) to the green and the blue

hues in proportion to the positive values of ḡ(λ) and b̄(λ),

respectively, we would obtain a color that, as seen by the eye,

would be the same as the spectrally pure color at that

wavelength. This would obviously be impossible since you

cannot have a negative proportion of a color component.

• Spectrally pure colors, although they represent only a fraction

of all possible colors, are obviously of engineering significance

since they can be generated with relative ease in a laboratory

for measurement and standardization. Since, as explained in the

previous bullet, it is not possible to generate even all the

spectrally pure colors by mixing red, green, and blue, these

three colors can really not be thought of as being true primary

colors. [We refer to a set of three colors as the true primary colors if all other

112

Texture and Color An RVL Tutorial by Avi Kak

Figure 12: This figure shows how much red, how much green, and
how much blue is needed at each wavelength to match the spectral color
at that wavelength. Obviously, the wavelengths where the curve goes

negative means that it is not possible to match those spectral colors
with a combination of R, G, and B. This figure is from the Wikipedia

page on “CIE 1931 color space”.

colors that are normally seen by humans can be synthesized by mixing them.]

• It is the above stated inability to generate even the spectral

colors from R, G, and B that has led to the designation of three

“abstract” colors, denoted X , Y , and Z, as the primary colors.

All spectral colors in the visible band can be generated by a

mixture of the XYZ primaries. To repeat for emphasis, only the

spectrally pure colors can be generated by combining the X, Y,

Z primary colors. It may not be possible to generate a

non-spectral color, such as magenta, by combining the X, Y, Z

primaries.

113

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.3: Color Spaces

• So far we have talked about the RGB space in some detail, and

I have briefly mentioned the names of the XYZ and the

HSI/V/L spaces. Each of these color spaces amounts to

representing color by a point in three dimensions.

• A color space may also be two dimensional, which may come as

a surprise since color is inherently three dimensional — meaning

that it appears to have at least three degrees of freedom in the

human visual system.

• When color is represented in 2D, the goal is to simplify its

representation by focusing on what’s perceived to be its most

important attribute. For example, the 2D Chromaticity Space is

intended to primarily show the range of hues that can be

generated by a given trio of primary colors.

• In the rest of this section, I’ll first explain the idea of the

Chromaticity Space. Subsequently, I’ll discuss the relationship

between different types of 3D color spaces.

114

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.3.1: The Chromaticity Space

• As I mentioned previously, the XYZ space was designed to do a

good job of representing spectrally pure colors. In the XYZ

space, an arbitrary spectral color C may be represented as

C = X ~X + Y ~Y + Z ~Z (36)

where X , Y , Z are the components of the color along the three

primaries that are symbolically represented by ~X , ~Y and ~Z. [We

say “symbolically” becaue the true meaning of what’s shown above is made clear by the three equations

shown next.]

• If the spectral distribution P (λ) of a color C is known, the

components X , Y , and Z may be found from

X = k

∫

P (λ)x̄(λ)dλ

Y = k

∫

P (λ)ȳ(λ)dλ

Z = k

∫

P (λ)z̄(λ)dλ (37)

where x̄(λ), ȳ(λ), and z̄(λ) are functions of the wavelength as

shown in Figure 13, and k is a value that depends on the device.

For example, a self-luminous object like a CRT has a k = 680

115

Texture and Color An RVL Tutorial by Avi Kak

lumen/watt. Using vector notion, we may therefore say

C =





X

Y
Z



 (38)

Figure 13: This figure shows how much of each of the primaries X,
Y, and Z it takes to produce a spectral color. This figure is from the
Wikipedia page on “CIE 1931 color space”.

• I’ll now introduce the notion of the Chromaticity Space.

Representation of color in chromaticity space is based on an

empirically verifiable premise that a large number of colors can

be produced by mixing the X, Y, and Z in just the right

proportions, without regard to their absolute values. To make

this notion more precise, consider the following normalized

versions of X , Y , and Z values in the XYZ space:

116

Texture and Color An RVL Tutorial by Avi Kak

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z
(39)

• With the normalization shown above, the lowercase x, y, and z

will always obey the following constraint:

x+ y + z = 1 (40)

• What is of engineering significance here is that as long as X , Y

and Z are in the same ratio vis-a-vis one another, the values of

x, y and z will remain unchanged and the constraint shown

above will be satisfied.

• To give the reader a greater insight into the transformation

from XYZ to xyz, consider the following two dimensional case:

u′ =
u

u+ v

v′ =
v

u+ v
(41)

117

Texture and Color An RVL Tutorial by Avi Kak

Just by substitution, the reader can easily verify that for all the

points along the line OA in the (u, v) space in Figure 14, the

corresponding u′ and v′ values will be at A′. Similarly, all the

points on the line OB will be mapped to the point B′, and so

on. [In other words, the entire positive quadrant in the (u, v) plane will be mapped to the line

PQ. Mathematically, this fact is inferred readily from the observation that u′ + v′ must equal 1 for all

mapped points.]

Figure 14: This figure shows how a normalization of the coordinates
in a 2D plane can map all the first quadrant points to the line PQ.

• Extending our two dimensional example to the three

dimensional case of XYZ (Figure 15), we see that for all the

values of X, Y, and Z, the value of x, y, and z will be confined to

the planar surface denoted by P, Q and S in Figure 15. This

plane is referred to as the Chromaticity Plane. The

projection of this planar surface on one of the orthogonal planes

constitutes the Chromaticity Diagram. Usually, the projection

118

Texture and Color An RVL Tutorial by Avi Kak

on the XY plane is taken.

Figure 15: The Chromaticity Plane is formed by mapping all of the
first quadrant values in the XYZ space to the plane defined by X +

Y + Z = 1.

• Remember the main justification for using x, y and z is that a

large majority of at least the pure spectral colors can be

produced simply by maintaining the right proportionalities

between the three constituents X, Y, and Z. Translating into

our diagram of Figure 15, that means that each point on the

planar surface bounded by P, Q, and S corresponds to some

color. The colors at the different points of this plane are shown

in Figure 16 in the form of a Chromaticity Plane.

• When these color on a Chromaticity Plane are projected on to

the XY plane, we get the corresponding Chromaticity Diagram,

119

Texture and Color An RVL Tutorial by Avi Kak

Figure 16: The Chromaticity Plane representation of color. This

figure is from http://www.iotalartiste.com/demarche.html

120

Texture and Color An RVL Tutorial by Avi Kak

as shown in Figure 17. This figure points to the main use of the

color depiction through Chromaticity Planes or Diagrams. The

triangle that is shown inside the overall rounded cone

corresponds to the sRGB color space. [sRGB is the RGB color space as

standardized by CEI. The prefix letter “s” stands for “standardized”.] The colors that

are outside the sRGB gamut, while discernible to humans,

cannot be reproduced by typical electronic displays. [By gamut, we

mean the colors that can be created through a linear mixture of R, G, and B.] The colors at

the periphery of the large rounded cone are the pure spectral

colors. So if you could tune the wavelength of a laser, you would

move around the rounded perimeter shown in the diagram.

• The boundary colors in the chromaticity depictions of the sort

in Figures 16 and 17 correspond to those colors that can be

produced by spectrally pure light. For example, if we were to

take a tunable laser and change its wavelength continuously

from one end of the visible spectrum to the other, as shown in

Figure 17 we would obtain colors corresponding to a clockwise

traversal of the boundary of the large rounded cone. So, the

interior colors of this cone correspond to those that would

require combining laser beams of different colors.

• Figure 18 again shows the Chromaticity Plane conceptually in

the positive quadrant of the XYZ space. Note that this time we

have roughly marked the points on the plane that would

correspond to the pure red, green, and the blue hues.

121

Texture and Color An RVL Tutorial by Avi Kak

Figure 17: Projection of the Chromaticity Plane on the XY-plane

gives us the Chromaticity Diagram. The triangle in the middle is the
sRGB color gamut that most electronic displays are capable of dis-

playing. The larger rounded cone is what the human eye can see. The
colors on the periphery of the large rounded cone are the spectral col-

ors. As you change the wavelength of a monochromatic light beam over
the entire spectral range visible to humans, you will move along the

rounded perimeter shown in the diagram. The arc in the middle shows
what is known as the Planckian Locus. The numbers shown along the
arc are the temperatures to which you must raise an incandescent black

body for it to emit the light at that point in the diagram.

122

Texture and Color An RVL Tutorial by Avi Kak

Figure 18: Chromaticity Plane that shows the locations of red, green,
and blue on the plane.

• With reference to the Chromaticity Planes in Figures 16 , 17,

and 18, it stands to reason that a mixture of any two colors that

can be represented by points on the chromaticity plane will lie

on a line joining those two points. Therefore, it follows that any

mixture of red, green, and blue will result in a color that will

correspond to a point in the triangle formed by the red, green,

and blue points. [As mentioned earlier, such a triangle is called a color gamut.] It

should therefore be clear from Figures 16 , 17, and 18 that a

vision sensor or display device that represents colors by

mixtures of red, green, and blue will certainly not cover all the

colors on the chromaticity plane.

123

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.3.2: The RGB Space

• Commonly used hardware devices for capturing and displaying

color images use the RGB representation, meaning that each

color is expressed by a mixture of red, green, and blue.

• Strictly speaking, as made clear by Figures 10 and 11, the

positive “quadrant” of the RGB space is a subset of the positive

quadrant the XYZ space. This fact is made clear by Figure 18

where we have drawn the X, Y, and Z vectors in an orthogonal

frame and the vectors corresponding to R, G, and B are then

shown by drawing lines through the corresponding points on the

chromaticity plane. [Theoretically speaking, the three RGB vectors span the same space

as the XYZ vectors. However, since colors can only be made from positive mixtures, the positive

“quadrant” of the RGB space is a subset of the positive quadrant of the XYZ space.]

• The R, G, and B components of color are typically expressed as

8-bit integers. That is, the value of each color component is an

integer in the range [0, 255].

• Figure 19 shows the colors on the surface of the RGB cube as

the cube is viewed inwards from the positive quadrant. [It may

seem like a contradiction that while the colors white, red, green, and blue are coplanar

in Figure 18, they are non-coplanar in the RGB cube of Figure 19. This contradiction

124

Texture and Color An RVL Tutorial by Avi Kak

is not real for the following reason: In the chromaticity depiction, every color is forced

to lie on the chromaticity plane of Figure 18 whether or not it really does. In other

words, the chromaticity coordinates only give us the relative proportions of the

primaries in a mixture but not their true values. So, it may well be that to produce

the color white we may have to be at the point W ′, but, as far the chromaticity

depiction is concerned, the color white will be represented by the point W .]

Figure 19: The RGB space with an orthonormal repre-

sentation of the three primary colors. This figure is from
http://radio.feld.cvut.cz/matlab/toolbox/images/color4.html

• Although not directly useful in everyday color processing, one

should note that linear transformations are available that

readily convert from XYZ values into RGB values and vice

versa. The relationship between the XYZ space and the RGB

space can be expressed as :

125

Texture and Color An RVL Tutorial by Avi Kak





X
Y

Z



 =





0.618 0.177 0.205
0.299 0.587 0.114

0.000 0.056 0.944









R
G

B



 (42)

• The reader might wonder that if a linear transformation can

convert any XYZ value into a corresponding RGB value, and if

it is possible to generate all pure spectral colors by mixing XYZ

primaries, why it is not possible to generate all such colors with

mixtures of R, G, and B. The answer is that there is no

guarantee that such transformations would yield positive

weights for the RGB colors.

126

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.3.3: The HSI Space

• We have already mentioned the HSI (Hue, Saturation,

Intensity) scheme for representing colors. The HSI coordinates

are cylindrical, with H being represented by the azimuthal

angle measured around the vertical axis, S by the outward

radial distance, and I the height along the vertical (Figure 20).

θ for hue

0 degree
Red Hue

120 degrees
Green Hue

240 degrees

saturation

Intensity

White, I=1.0

Black
I=0.0

Blue Hue

Figure 20: The HSI space

127

Texture and Color An RVL Tutorial by Avi Kak

• As you would expect, [0.0, 360.0] in degrees is the value range

for H. And the value range is [0.0, 1.0] for both S and I .

• The red hue is placed at H = 0◦, the green at H = 120◦, and
the blue at H = 240◦. The point I = 1 on the vertical axis

corresponds to pure white, and the origin to the black color

since the intensity will be zero there.

• Since the HSI coordinates are more intuitive to humans and

since RGB is what is used by most digital devices for image

capture and display, it is important to establish a

transformation between the two spaces.

• To set up a transformation between RGB and HSI, we line up

the diagonal of the the RGB cube in Figure 19 with the vertical

axis of Figure 20. We obviously want the (255, 255, 255) point

of the RGB cube to become coincident with the I = 1 point on

the vertical axis of the HSI cylindrical representation since these

two points in their respective spaces represent the color white

(Figure 21). [IMPORTANT: When aligning the RGB cube with the HSI coodinates, the R,

G, and B values are mapped to the [0, 1] interval from their original [0, 255 value range.]

• In Figure 21, the rotational orientation of the RGB cube is such

that the red axis of the cube is in same azimuthal plane (the

H = O◦ plane) that contains the red hue in HSI. This will

128

Texture and Color An RVL Tutorial by Avi Kak

u

v

w

G

R

B

C

H
S

I

C
u

C
v

C
w

Figure 21: The RGB cube is tilted and rotated in the manner shown

here for deriving a relationship between RGB and HSI coordinates.
The longest diagonal of the cube becomes aligned with the vertical In-

tensity (I) axis in HSI. The Hue (H) coordinates of HSI is measured
counterclockwise from the projection of the RGB cube’s red corner on
the horizontal plane. Saturation (S) is the radial distance from the

vertical axis.

129

Texture and Color An RVL Tutorial by Avi Kak

automatically cause the green axis of the RGB cube to fall on

the azimuthal plane corresponding to H = 120◦. Recall that the
point at H = 120◦, S = 1, and I = 1 designates green in the

HSI system. Similarly, for the blue axis of the RGB frame.

• One may now write down the transformation equations that

take a color point from RGB to HSI and vice versa. To facilitate

the derivation of these equations, let’s momentarily assume that

the HSI system is embedded in a Cartesian frame whose axes

are labeled U, V and W, as shown in Figure 21. Consider now

an arbitrary color point C, whose projections on the U , V , W

axes are given by Cu, Cv, and Cw. Clearly, then the HSI values

associated with this color point are given by

H = tan−1 Cv

Cu

S =
√

C2
u + C2

v

I = Cw (43)

• To express the transformation from RGB to HSI, all we now

need do is express an arbitrary point C in the RGB points in

the UVW frame. Let the coordinates of this point in the RGB

frame be given by R, G, and B and the corresponding

coordinates in the UVW frame by Cu, Cv, and Cw.

[IMPORTANT: In the formulas here, we assume that the value of R, G, and B are

130

Texture and Color An RVL Tutorial by Avi Kak

normalized to the [0, 1] range.] Then,

Cu =

√

2R−G− B

6

Cv =

√

G−B

2

Cw =
R +G+ B

3
(44)

• Since the arctan in Eq. (35) for H is a multivalued function, the

value of H needs to be specified more precisely. Ambiguities are

resolved by using the following set of formulas for H:

H = cos−1

(

Cu
√

C2
u + C2

v

)

if G >= B

= 360 − cos−1

(

Cu
√

C2
u + C2

v

)

if G < B

(45)

• Since there is no guarantee that the computed value for S will

not exceed 1, it is normalized as follows:

S =
S

Smax

(46)

131

Texture and Color An RVL Tutorial by Avi Kak

which results in the following equation for S :

S = 1 − 3 ·min(R,G,B)

R +G+B
(47)

Although useful in an approximate sense, there are serious

conceptual shortcomings in the above derivation of the

transformation. First and foremost, we assumed the RGB space

to be orthogonal. As mentioned earlier, while the R, G, and B

vectors may be linearly independent in the XYZ space, they are

certainly not orthogonal. Their orthogonality in Figure 12 was

meant simply to make easier the visualization of color

distributions.

• So, strictly speaking, to derive a transformation between the

RGB space and HSI space, one must derive transformation

equations that relate the RGB vectors, as shown in Figure 18,

with the HSI space as shown in Figure 20, the transformation

being controlled on the one hand by the alignment of the white

points in the two spaces and, on the other, by the requirements

that the R, G, and B vectors in Figure 18 pass through the the

designated points for the three colors in the HSI cylinder in

Figure 20. Such a transformation would be very complex for

obvious reasons. However, it is possible to make reasonable

approximations.

• The goal of what I have described so far was to give the reader

a sense how one can set up a connection between the RGB and

the HSI color spaces. Using this reasoning, along with some

132

Texture and Color An RVL Tutorial by Avi Kak

refinements related to explicitly factoring in the piecewise

continuous nature of the boundary of the RGB cube, I’ll show

below the transformation equations that have actually been

implemented in several software libraries: [These and other transformations

like the one shown below are taken from http://dystopiancode.blogspot.com with some

modifications by me to reflect how they are actually implemented in code.]

• In the RGB to HSI transformation shown below, the input

consists of a triplet of values (R,G,B), with each color

component expressed as a floating point number in the [0, 1]

range. And the output of the transformation is a triplet of

values (H,S, I), with H expressed in degrees.

M = max(R,G,B)

m = min(R,G,B)

c = M −m

I =
R +G+B

3

H =















60
(

G−B

c
mod 6

)

if M = R, c 6= 0

60
(

B−R

c
+ 2
)

if M = G, c 6= 0

60
(

R−G

c
+ 4
)

if M = B, c 6= 0

0.0 if C = 0

S =

[

0 if c = 0
1− m

l
if c 6= 0

(48)

• Note that when the three color components, R, G, and B are

equal, you are supposed to get a pure gray point on the vertical

axis of the HSI coordinate system. That’s what the formulas

133

http://dystopiancode.blogspot.com

Texture and Color An RVL Tutorial by Avi Kak

shown above do. In such cases, c is zero. That causes H to be

set to 0, S to also be set to 0, and I to be set to one of the R,

G, B values (since they will all be the same). Yes, the point

H = 0◦ means pure red. However, that is not an issue since it is

at a radial distance of 0 from the vertical axis. Also note that

using the condition c 6= 0 in the formulas for H protects us

against division by 0 when all three color components are the

same.

• Shown below are the formulas that take you from HSI to RGB.

In these formulas, we represent a point in the HSI space by the

triplet (H,S, I). The variable hr stands for the value of H in

radians (as opposed to degrees) and the variable hk is the

corresponding angle offset in each of the 120◦ segments of the

hue circle. As you know from the previous discussion, the 0◦

point for H corresponds to pure red, the 120◦ point to pure

green, and the 240◦ point to pure blue. In terms of radians

these points are at 0, 2π/3 and 4π/3 radians. [Strictly speaking, I should

not have shown the expression for calculating the three variables (x, y, z) in a single line — since the

calculation for z requires that you first have calculated the values for x and y.] The input to

the transformation shown below consists of a triplet of values

(H,S, I), with H expressed in degrees. And the output of the

transformation consists of a triplet of values (R,G,B) with

each color component expressed as a floating point value in the

[0, 1] range.

134

Texture and Color An RVL Tutorial by Avi Kak

hr = 0.0174532925×H

hk =





hr if 0 ≤ hr ≤ 2

3
π

hr − 2

3
π if 2

3
π < hr ≤ 4

3
π

hr − 4

3
π if 4

3
π < hr < 2π

(x, y, z) =

(

1− S

3
,

1 + S cos(hk)

3 cos(π
3
− hk)

, 1− (x+ y)

)

(x′, y′, z′) =
(

3× I × x, 3× I × y, 3× I × z
)

(R,G,B) =









(I, I, I) if S = 0
(y′, z′, x′) if 0 ≤ hr ≤ 2

3
π

(x′, y′, z′) if 2

3
π < hr ≤ 4

3
π

(z′, y′, x′) if 4

3
π < hr < 2π

(49)

135

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.3.4: HSV and HSL Spaces

• The HSI representation of color tends to underestimate the

intensity values at the pixels. In the HSI model, the intensity at

a pixel is supposed to capture the “energy” of the light your eye

wants to associate with that pixel. However, when you set

I = (R +G + B)/3, you are basically setting I to the average

of the “energies” that you may associate separately with the

three color channels. If you really think about it, that does not

seem like the correct thing to do. [Let’s say that an image display looks very bright

— meaning that its pixels pack much light “energy” —because of the bright reds in the image. And let’s also

assume that there is no blue or green in the image. By setting I = R/3 in this case, the HSI formula would

discount the “energy” coming off the pixels by two-thirds — which really does not make a whole lot of sense.

The fact that HSI mutes the I values unless it sees strength in all three color channels can be highly

problematic for computer vision algorithms. For extracting the shape information, many computer

vision algorithms depend primarily on the intensity attributes at the pixels.]

• This shortcoming of HSI is remedied in the HSV and HSL

models of color vision. So as not to cause any confusion between

different ways of calculating the intensities, what is I in HSI is

represented by V for “Value” in HSV, and by L for “Lightness”

in HSL. Whereas the calculation of H remains the same in HSV

and HSL as as in HSI, the formulas for how V and L are

calculated are very different, as you would expect. The different

ways of calculating the intensity result in a small modification

136

Texture and Color An RVL Tutorial by Avi Kak

to the formulas for calculating the saturation. [The value ranges for the

three variables in both HSV and HSL remain the same as for HSI. That is, H values span [0.0, 360.0],

S values span [0.0, 1.0]; and both V and L values span [0.0, 1.0].]

• The V in HSV is calculated as max(R,G,B). And the L in

HSL is calculated as max(R,G,B)+min(R,G,B)
2

.

• The S in HSV is calculated as max(R,G,B)−min(R,G,B)
V

. And the

same in HSL is calculated as max(R,G,B)−min(R,G,B)
1−abs(2L−1)

.

• Figure 22 on the next page shows a rather dramatic comparison

of the intensity values calculated by the different color models.

• Since HSV tends to be employed more commonly compared to

HSL, I’ll show below how the transformation formulas as they

have actually been implemented in several software libraries for

going from RGB to HSV and back.

• Here are the formulas that take you from RGB to HSV. The

input to the transformation shown below consists of a triplet of

values (R,G,B) with the individual color components

normalized to the [0, 1] range.

137

Texture and Color An RVL Tutorial by Avi Kak

Figure 22: The left image in the topmost row is the original image.

The right image in the same row is the depiction of I values in the
HSI model. In the second row, the left image shows the V in the HSV

representation of the colors and the right image the L in the HSL
representation. The image shown in the last row is the L∗ component

in the CIE L*a*b* representation of color. All these images are from
the Wikipedia page on “HSL and HSV”.

138

Texture and Color An RVL Tutorial by Avi Kak

M = max(R,G,B)

m = min(R,G,B)

c = M −m

V = M

H =















60
(

G−B

c
mod 6

)

if M = R, c 6= 0

60
(

B−R

c
+ 2
)

if M = G, c 6= 0

60
(

R−G

c
+ 4
)

if M = B, c 6= 0

0 if c = 0

S =
c

V
(50)

• In the formulas shown above, note how we protect the

calculation of H against division by 0 when R, G, and B have

exactly the same values. We know that when you mix these

primary colors in equal amounts, you get pure gray, which is a

point on the vertical axis of the HSV coordinate frame. When

c = 0, these formulas return (M, 0, 0), which is a point on the

vertical axis of the HSV space.

• And, finally, shown are the corresponding formulas for going

from HSV to RGB. The input to the transformation shown

below consists of triplet of values (H,S, V). Note that the

returned values for the individual colors in the triplet (R,G,B)

are in the range [0, 1].

139

Texture and Color An RVL Tutorial by Avi Kak

c = V × S

m = V − c

x = c
(

1−
∣

∣

∣

H

60
mod 2 − 1

∣

∣

∣

)

(R,G,B) =















(c+m, x+m,m) if 0 ≤ H ≤ 60
(x+m, c+m,m) if 60 < H ≤ 120
(m, c+m, x+m) if 120 < H ≤ 180
(m, x+m, c +m) if 180 < H ≤ 240
(x+m,m, c +m) if 240 < H ≤ 300
(c+m,m, x+m) if 300 < H ≤ 360

(51)

140

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.3.5: Opponent Color Spaces

• It has been suggested by many researchers who work on the

psychophysics of color vision that the human experience of color

is marked by what are referred to as the opponent colors.

Opponent colors are based on the notion that the cells in the

retina collaborate to form receptor complexes and, through the

receptor complexes, the three independent components of color

that the eye can see are along the red-green, blue-yellow, and

black-white dimensions. [The “red-green”, “blue-yellow”, and “black-white” are referred

to as opponent pairs. You can think of red as opposed to green, blue as opposed to yellow, and black as

opposed to white. The human brain wants to receive a single signal for each of the three opposites.]

• That is, as shown in Figure 23, the visual cortex in the brain

gets three independent signals from the retina: one regarding

how much of the red-green dimension exists at a point in the

scene; a second regarding how much of the blue-yellow

dimension exists; and a third regarding how much of the

black-white dimension exists at a scene point. The receptor

complexes that perceive these three different dimensions of the

color are referred to as the opponent cells. [The fact that we can see orange,

whose three independent components would be red, yellow, and white, and the fact that we cannot see

reddish-green or yellowish-blue supports the opponent color model. Since the two color components in a

reddish-green mixture are along the same dimension, the red-green receptor complex is unable to discern

them separately.] Note the very important fact that if there was not

141

Texture and Color An RVL Tutorial by Avi Kak

considerable overlap between the spectral sensitivities shown in

Figure 11 for L, M, and S, it would not be possible for a

receptor complex to see the colors in the opponent manner.

Figure 23: This figure depicts how the output produced by the L, M,
and S cone cells (whose spectral responses were shown previously in

Figure 11) are combined to produce the three opponent color signals
for the visual cortex in the brain. This figure is from the Wikipedia
page on “Opponent Processes”.

• The L*a*b* is currently the most widely used opponent color

model, L stands for luminance (what L∗ is to the L*a*b*

model, I is to HSI, V is to HSV, L to HSL, etc.) and a∗ and b∗
stand for the two color opponent dimensions.

• Since L*a*b* is a nonlinear color space, the transformation

equations that go between it and the other color spaces we have

covered so far are computationally complex. For example, to go

from RGB to L*a*b*, you must locate the color value in the

“absolute” color space XYZ, and then apply nonlinear functions

on the result values to get the L∗, a∗, and b∗ values. The

142

Texture and Color An RVL Tutorial by Avi Kak

Wikipedia page on “Lab color space” for a good summary of

what is required by such transformations.

143

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.3.6: The CMY Space

• Understanding color in RGB space is important because digital

cameras produce R, G, and B signals and because display

monitors take R, G, and B signals to output color images.

Understanding color in HSI/HSV/HSL space is important

because it is in that space we as humans understand color the

best.

• However, when it comes to making hardcopies of color images,

one must understand color in what is referred to as Cyan,

Magenta, Yellow space or the CMY space.

• Just as red, green, and blue are additive “primaries” (meaning

that we may attempt to express any emitted color as an

additive mixture of these three colors), cyan, magenta, and

yellow are subtractive primaries. To explain what that means,

shown in Figure 24 on the next page is the color wheel for

pigment hues. [On a color wheel, the pigments corresponding to any two hues that are

one hue apart may be mixed to yield a pigment whose hue is in the middle. For example, if we mix

together the cyan and magenta pigments, we obtain the blue pigment.]

• When we say a pigment hue on the color wheel of Figure 24 is

144

Texture and Color An RVL Tutorial by Avi Kak

Figure 24: The color wheel for pigment hues. The colors that
are diametrically opposites are subtractive vis-a-vis each other. The

opposite color pairs are considered to be complementary. The two
colors that are immediately adjacent to each color are considered

to be analogous. Finally, the three colors at the vertices of an
equilateral inside the wheel are considered to form a triad. From

http: // www. realcolorwheel.com/ newcolorwheel.htm

145

http://www.realcolorwheel.com/newcolorwheel.htm

Texture and Color An RVL Tutorial by Avi Kak

subtractive, what we mean is that if we shine white light on a

surface coated with that pigment, it will absorb from the white

light the hue at the opposite point on the color circle. Assume

that a surface is coated with the cyan pigment. Now assume

that a beam of white light rich in all hues is incident on the

surface. The pigment will absorb the red hue and the

distribution of hues in the reflected light will carry all hues

except red. Since the reflected light must again be thought of as

emitted light, we must add the hues on the color wheel to

determine the color of the reflected beam. The hues that are

opposite on the color wheel add up to white. Therefore, the

reflected light will bear the color of cyan (since its opposite, red,

would be absorbed by the pigment), in addition to containing a

significant extent of white light. In other words, the reflected

light will be an unsaturated version of cyan. [This explanation

should also point to the fact that the colors seen in the white light that is

reflected off colored object surfaces can never appear to be intense since

much of the white light remains in what is reflected. In other words, you

have to use emitted light for constructing brilliant displays — as you might

have noticed from the more modern billboards along highways these days.]

• Just as a video monitor has separate light emitters for red,

green, and blue, a hard copy printer has separate ”pens” for

cyan, magenta, and yellow. Suppose a pixel produced by a color

camera has the following components of R, G, and B: R = 0.8,

G = 0.3, and B = 0.4, where for the sake of the explanation

here, we have assumed the range [0.0, 1.0] for the three color

146

Texture and Color An RVL Tutorial by Avi Kak

components. When this pixel is displayed on a color calibrated

video monitor, these RGB values will cause the monitor pixel to

possess the right color. However, when the same pixel is sent for

display to a hardcopy printer, the values sent to the cyan,

magenta, and yellow pens must be

C = 0.2 = 1− R

M = 0.7 = 1−G

Y = 0.6 = 1− B

(52)

• With the CMY values set as shown above, C being 0.2 will

cause the deposited cyan pigment to absorb 0.2 fraction of the

red hue in the supposedly white illumination of the hardcopy

surface, releasing 0.8 of the red hue in the direction of the

observer. Similarly, with M and Y for the generation of the

correct values of G and B for an observer.

• This transformation between RGB and the CMY values

required to produce the correct RGB in light reflected from a

hardcopy is expressed succinctly by





C

M
Y



 =





1

1
1



−





R

G
B



 (53)

147

Texture and Color An RVL Tutorial by Avi Kak

Back to TOC

7.4: The Great Difficulty of Measuring the True

Color of an Object Surface

• From the standpoint of computer vision, our goal is obviously to

associate with each pixel in an image a color value that

represents the true color of the object surface that gave rise to

the pixel.

• Unfortunately, what makes the measurement of that color

complicated are the following factors:

– The direction of illumination. When illumination is not purely

diffuse, the color of the light coming off an object surface depends
on the direction of the incident illumination. In general, now the

light coming off the surface will have a specular component and a
diffuse component. The “true” color of a surface is normally
associated with just the diffuse light coming off the surface.

– The reflection properties of the object surface with regard to how
much of the incident light is reflected specularly and how through

diffuse processes. This would depend on the roughness (texture) of
the surface.

– The color of the illumination. The color of the light coming off a
surface depends significantly on the color of the illumination.

– The intensity of the illumination. The dependence on the intensity
means that, if you are recording an image of an outdoor scene

148

Texture and Color An RVL Tutorial by Avi Kak

during daytime, the color measurements for same surface will be
different depending on whether it is directly in the sunlight or

whether it is in a shadow. [This is partly the same phenomenon as
captured by the nonlinearities of the human color vision. See the

earlier discussion on the Opponent Color Spaces such as L*a*b* in
the previous section.]

– Color filtering by the hardware. The spectral properties of the three

color filters used by the camera that are used to break incoming
light into ostensibly the R, G, and B components.

• That the color of the light coming off an object surface depends

significantly on the color composition of the illumination is

illustrated by Figure 25. As you can see in the figure, a yellow

ball looks green under mostly blue illumination. This figure also

shows how one can algorithmically correct for illumination

induced distortion of the color of a surface. The result shown in

(c) of the figure was obtained through the use of an

illumination-adaptive color space that was introduced in 2005

by Park and Kak in the report “A New Color Representation

for Non-White Illumination Conditions,” that was cited at

the end of Section 6.1.

• For another example of illumination dependency of the image

recorded by a digital camera, shown in the top row of Figure 26

are four different images for the same plastic toy. These images

were recorded under the following illuminations: (1) florescent,

(2) blue incandescent, (3) green incandescent, and (4) tungston.

149

Texture and Color An RVL Tutorial by Avi Kak

Figure 25: (a) A green ball and a yellow ball imaged under ambient
white-light illumination. (b) The yellow ball imaged under blue illu-

mination. It now looks quite a bit like the green ball. (c) The image of
(b) after its processing by the algorithm in the 2005 Park and Kak re-
port titled “A New Color Representation for Non-White Illumination

Conditions” that was cited at the end of Section 6.1.

The second row demonstrates the extent to which the true color

of the toy was restored in each case by the illumination-adaptive

color representation of Park and Kak mentioned in the previous

bullet.

• Regarding the dependence of the measured color on the

measuring device itself, note that the photoelectric cells in the

camera imaging sensor (which may either be a CCD sensor or a

CMOS sensor) use color filters centered around the R, G, and B

wavelengths. So the 3-dimensional measurement of the color at

each pixel also depends on the spectral properties of these

filters. [The three measurements at each pixel may be recorded by a single sensor chip that contains a

mosaic of cells in which groupings of three adjacent cells are used for measuring the R, G, B components

150

Texture and Color An RVL Tutorial by Avi Kak

Figure 26: The photos in the top row are of the same plastic toy

and were recorded by the same digital camera using four different il-
lumination sources: (1) florescent, (2) blue incandescent, (3) green

incandescent, and (4) tungston. The second row demonstrates the ex-
tent to which the true color of the toy was restored in each case by the

illumination-adaptive color representation method of Park and Kak.

151

Texture and Color An RVL Tutorial by Avi Kak

separately. An incoming light ray is deflected to each of three cells in a grouping and light for each cell passed

through a color-sensitive filter specific to that cell. An alternative consists of using three separate sensor

chips, one for each color component, and a set of prisms that are shaped to deflect a particular color

component to each chip.]

• Figure 27 points to the issues involved in the dependence of the

measured color on the direction of the illumination. The main

issue here is that the diffuse light that is reflected off a surface

(which is the light we want a camera to capture for

characterizing the color of the surface) has a cosine dependence

on the angle of illumination to the perpendicular to the

surface. [For a given incident light beam, we have shown reflected light as consisting of specular and

diffuse components, the components being additive. The specular and the diffuse components of the reflected

light are also known as the surface component and the body component, respectively. Light reflected by

homogeneous materials such as metals is dominated by the surface components, whereas the light reflected by

inhomogeneous material is dominated by the body component.]

• The dependence of the reflected diffuse color light on the angle

of illumination is illustrated with some actual measurements in

Figure 29. The two results shown in that figure are for the pink

and the yellow objects in the pile shown in Figure 28. For the

two experimental results shown in Figure 29, the position/angle

of the source of illumination and the camera were kept fixed

while the surface was tilted in increments of 15◦.

152

Texture and Color An RVL Tutorial by Avi Kak

Figure 27: Si represents the specular reflection resulting from the
illumination source i. The diffuse reflection from any illumination

source radiates out in all directions. The radius of the arc labeled Di

represents the magnitude of the diffuse reflection from the illumination
source i. Note that this magnitude depends on the cosine of the angle

the illumination source makes with the surface.

Figure 28: The yellow and the white objects shown in this pile were

used for demonstrating the dependence of the measured color on the
orientation of a surface.

153

Texture and Color An RVL Tutorial by Avi Kak

Figure 29: The color recorded by a camera as an object is rotated in
increments of 15◦. The position and the direction of both the illumi-

nation source and the camera were kept fixed for the results shown.
This figure is taken from the Grewe and Kak publication cited at the

end of Section 6.1.

• To fully appreciate the results shown in Figure 29, note that at

the relatively small slant angle of 15◦, which is also the angle of

incidence, we would expect the specular component of the

reflected light to be the strongest, as can be seen in both the

results in the figure.

• When the camera is situated in a direction where the angle of

reflection is nearly the same as the angle of incidence, the

surface component will usually dominate and the spectral

composition of this component will be approximately the same

as that of the illumination source. Since our illumination source

for the measurement of color is white light, the color shown in

Figure 22 for the slant angle of 15◦ has the most white in it.

[The angle between the illumination source and the optical axis of the camera is approximately 30◦ and,

154

Texture and Color An RVL Tutorial by Avi Kak

when the surface is at slant of 15◦, the camera registers the largest specular component. This is explained

approximately by the law of reflection, which says that the angle of reflection subtended by the specular

component of light with respect to the surface normal must equal the angle of incidence of the illumination

light with respect to the normal. More accurately, this phenomenon is explained by the Torrance-Sparrow

model of reflection.]

• In the results shown in Figure 29, when the slant angle of the

surface becomes large, the reflected light consists mostly of the

body component. But the intensity of this light diminishes

rapidly as the surface slant angle approaches 90◦. This explains
the “darkness” of the result shown for the surface tilt angle of

75◦. This diminishing effect is a result of the fact that if we

assume a perfectly Lambertian surface, the magnitude of the

body component varies as a cosine of the angle of incidence.

155

	Does the World Really Need Yet Another Tutorial?
	Characterizing Image Textures
	Characterizing a Texture with a Gray Level Co-Occurrence Matrix (GLCM)
	Summary of GLCM Properties
	Deriving Texture Measures from GLCM
	Python Code for Experimenting with GLCM

	Characterizing Image Textures with Local Binary Pattern (LBP) Histograms
	Characterizing a Local Inter-Pixel Grayscale Variation by a Contrast-Change-Invariant Binary Pattern
	Generating Rotation-Invariant Representations from Local Binary Patterns
	Encoding the minIntVal Forms of the Local Binary Patterns
	Python Code for Experimenting with LBP

	Characterizing Image Textures with a Gabor Filter Family
	A Brief Review of 2D Fourier Transform
	The Gabor Filter Operator
	Python Code for Experimenting with Gabor Filter Banks

	Deep Learning and Image Textures
	Gram Matrices for Texture Characterization in Neural Networks
	Texture Characterization with Channel Normalization Parameters

	Dealing with Color in Images
	What Makes Learning About Color So Frustrating
	Our Trichromatic Vision and the RGB Model of Color
	Color Spaces
	The Chromaticity Space
	The RGB Space
	The HSI Space
	HSV and HSL Spaces
	Opponent Color Spaces
	The CMY Space

	The Great Difficulty of Measuring the True Color of an Object Surface

