
Evaluating Information Retrieval
Algorithms with Significance Testing

Based on Randomization and Student’s
Paired t-Test

Avinash Kak

Purdue University

June 14, 2023
2:43pm

An RVL Tutorial Presentation

Originally presented in Fall 2019

©2023 Avinash Kak, Purdue University

CONTENTS

Section Title Page

1 Precision and Recall for Characterizing 3
a Retrieval Algorithm

2 Precision vs. Recall for Retrieval by a Monkey 18

3 Precision vs. Recall for Retrieval by an Oracle 21

4 Average Precision for a Query qi 25

5 Mean Average Precision (MAP) for a Retrieval 27
Algorithm

6 Algorithm::VSM — A Perl Module for Information 29
Retrieval and Significance Testing

7 Convenience Scripts in Algorithm::VSM 36

8 Comparing Retrieval Algorithms 39

9 The Three Ingredients of Significance Testing 45

10 Calculating p-Values with Randomization Test 48

11 Calculating p-Values with Student’s t-Test 61

12 Comparison of p-Values 64

13 A Potential Source of Confusion Regarding 67
the Calculation of p-Values

14 Acknowledgments 70

2

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

1: Precision and Recall for Characterizing a
Retrieval Algorithm

� Let’s say we are evaluating the performance of an information

retrieval algorithm on a database with 100 documents in it. Let’s

see how we might characterize what the algorithm retrieves for a

specific query q.

� A retrieval algorithm will, in general, return a ranked list of

documents from the database. For the given query q, let’s say

that the returned list looks like what is shown on the next page in

Table 1.

� In order to characterize the performance of the retrieval algorithm,

you need to know the “ground truth”, which, in this case, is the

list of documents that are known to be relevant to the query q.

Let’s say that only the documents d3, d6, d7, d9, and d10 are

relevant to query q. Assume all other documents are irrelevant.

� The performance of a retrieval algorithm is measured by two

properties: Precision and Recall at a given rank r.

� We denote the Precision at rank r by P@r and the Recall at rank

3

Significance Testing for IR An RVL Tutorial by Avi Kak

Ranked list of the docs retrieved Is the retrieved document

for query q that has 5 relevant relevant to query q ?
docs in the database

d1

d2

d3 yes

d4

d5

d6 yes

d7 yes

d8

d9 yes

d10 yes

d11

d12

d13

d14

d15
.
.
.

d100

Table 1: An example of the 100 items returned in the form of a ranked list by an IR algorithm for a query q.

4

Significance Testing for IR An RVL Tutorial by Avi Kak

r by R@r.

� Given rank r, we define P@r and R@r as follows:

P@r =
|retrieved@r

⋂

relevant|

|retrieved@r|

R@r =
|retrieved@r

⋂

relevant|

|relevant|

where retrieved@r denotes the set of the r top-ranked

documents in what’s returned by the algorithm. On the other

hand, relevant denotes the set of all the documents in the

dataset that are relevant to the query. The symbol || denotes

the cardinality of the sets involved — that is, the number of items

in the sets. Since the cardinality of the set retrieved@r is equal

to r, we have |retrieved@r| = r. Therefore, the definitions shown

above can also be expressed as

P@r =
|retrieved@r

⋂

relevant|

r

R@r =
|retrieved@r

⋂

relevant|

|relevant|

� The numerators for both P@r and R@r are the same and, for a

given query q, are equal to the number of items that are actually

relevant to q among the r topmost returned items.

5

Significance Testing for IR An RVL Tutorial by Avi Kak

� The denominators, however, are different. For P@r, the

denominator is the number of documents returned up to rank r

— that would obviously be just r itself. For R@r, the

denominator is independent of rank and equal to the total

number of the documents in the dataset that are relevant to q.

� Even more succinctly, P@r measures the fraction of the

top-ranked r documents that are actually relevant to the query.

And R@r measures the fraction of all the relevant documents that

show up in the top-ranked r documents.

� Using these formulas, the P@r and R@r values for the retrieval in

Table 1 are shown in Table 2. [In Table 2, for values of rank r from 15 through 100,

P@r decreases monotonically as 5/r. On the other hand, for the same range of r values, R@r remains

constant at 1.]

� Figure 1 shows at the top a point-plot of the Precision vs. Recall

values and, at the bottom, a Precision-vs.-Recall curve drawn

through the points for the Precision at rank and Recall at rank

values shown in Table 2.

� Regarding the vertical drops you see in the figure at the bottom of

Figure 1: Starting at the origin, a walk along the red curve

corresponds to you scanning the retrieved list from the highest

ranked documents to the lowest ranked documents. The vertical

drops in the curve are caused by those documents that are

6

Significance Testing for IR An RVL Tutorial by Avi Kak

irrelevant to the query. [When you run into an irrelevant document during the scan, the

Precision decreases, while the Recall remains unchanged.]

� To show that the shape of the P@r vs. R@r curve can change

dramatically depending on the manner in which the top-ranked

retrieved documents are relevant to the query, consider the

retrieval shown in Table 3.

� Table 4 shows the P@r and R@r values for the retrieval example

in Table 3 where the top-ranked five documents are all relevant to

the query; all others are irrelevant. [In Table 4, for values of rank r from 15

through 100, P@r decreases monotonically as 5/r. On the other hand, R@r remains constant at

1.] Figure 2 shows the P@r and R@r values in the form of a

point plot and as a Precision-vs.-Recall curve.

� In the plot at the bottom of Figure 2, note how the P@r values

remain constant through consecutive retrievals as we start at the

top of the ranked list of retrievals and work our way down. That

happens until we reach the R@r value of 1, at which point all the

subsequent P@r values fall on a vertical line.

� For our third example of what the P@r vs. R@r curve may look

like for a retrieval algorithm, consider the retrieval shown in Table

5.

7

Significance Testing for IR An RVL Tutorial by Avi Kak

rank Precision at rank Recall at rank

1 P@1 = 0 R@1 = 0

2 P@2 = 0 R@2 = 0

3 P@3 = 1/3 R@3 = 1/5

4 P@4 = 1/4 R@4 = 1/5

5 P@5 = 1/5 R@5 = 1/5

6 P@6 = 2/6 = 1/3 R@6 = 2/5

7 P@7 = 3/7 R@7 = 3/5

8 P@8 = 3/8 R@8 = 3/5

9 P@9 = 4/9 R@9 = 4/5

10 P@10 = 5/10 = 1/2 R@10 = 5/5 = 1

11 P@11 = 5/11 R@11 = 5/5 = 1

12 P@12 = 5/12 R@12 = 5/5 = 1

13 P@13 = 5/13 R@13 = 5/5 = 1

14 P@14 = 5/14 R@14 = 5/5 = 1

15 P@15 = 5/15 = 1/3 R@15 = 5/5 = 1
. . .
. . .
. . .

100 P@100 = 5/100 R@100 = 5/5 = 1

Table 2: P@r and R@r values at different ranks for the retrieval result shown in Table 1.

8

Significance Testing for IR An RVL Tutorial by Avi Kak

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

 r=1, r=2

 r=3

 r=4

 r=5

 r=6

 r=7

 r=8

 r=9

 r=10

 r=11

 r=12

 r=13

 r=14

 r=15

 r=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

 r=1, r=2

 r=3

 r=4

 r=5

 r=6

 r=7

 r=8

 r=9

 r=10

 r=11

 r=12

 r=13

 r=14

 r=15

 r=100

Figure 1: Shown above is a point-plot of P@r vs. R@r for the retrieval in

Table 1. Shown in the lower figure is a curve drawn through the point plot.

9

Significance Testing for IR An RVL Tutorial by Avi Kak

Ranked list of the docs retrieved Is the retrieved document

for query q that has 5 relevant relevant to query q ?
docs in the database

d1 yes

d2 yes

d3 yes

d4 yes

d5 yes

d6

d7

d8

d9

d10

d11

d12

d13

d14

d15
.
.
.

d100

Table 3: Another example of the 100 items returned in the form of a ranked list by an IR algorithm for a query q.

10

Significance Testing for IR An RVL Tutorial by Avi Kak

rank Precision at rank Recall at rank

1 P@1 = 1 R@1 = 1/5

2 P@2 = 1 R@2 = 2/5

3 P@3 = 1 R@3 = 3/5

4 P@4 = 1 R@4 = 4/5

5 P@5 = 1 R@5 = 5/5 = 1

6 P@6 = 5/6 R@6 = 5/5 = 1

7 P@7 = 5/7 R@7 = 5/5 = 1

8 P@8 = 5/8 R@8 = 5/5 = 1

9 P@9 = 5/9 R@9 = 5/5 = 1

10 P@10 = 5/10 = 1/2 R@10 = 5/5 = 1

11 P@11 = 5/11 R@11 = 5/5 = 1

12 P@12 = 5/12 R@12 = 5/5 = 1

13 P@13 = 5/13 R@13 = 5/5 = 1

14 P@14 = 5/14 R@14 = 5/5 = 1

15 P@15 = 5/15 = 1/3 R@15 = 5/5 = 1
. . .
. . .
. . .

100 P@100 = 5/100 R@100 = 5/5 = 1

Table 4: P@r and R@r values at different ranks for the retrieval result shown in Table 3.

11

Significance Testing for IR An RVL Tutorial by Avi Kak

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

 r=1 r=2 r=3 r=4 r=5

 r=6

 r=7

 r=8

 r=9

 r=10
 r=11
 r=12
 r=13
 r=14
 r=15

 r=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

 r=1 r=2 r=3 r=4 r=5

 r=6

 r=7

 r=8

 r=9

 r=10
 r=11
 r=12
 r=13
 r=14
 r=15

 r=100

Figure 2: Shown above is a point-plot of P@r vs. R@r for the retrieval in

Table 3. Shown below is a curve drawn through the point plot.

12

Significance Testing for IR An RVL Tutorial by Avi Kak

� Table 6 shows the P@r and R@r values for the retrieval depicted

in Table 5. [In Table 5, for values of rank r from 15 through 100, P@r decreases monotonically

as 5/r and R@r remains constant at 1.] Figure 3 shows the P@r and R@r

values both in the form of a point plot and as a

Precision-vs.-Recall curve.

� Overall, the relevancy pattern shown in Table 5 is not that

radically different from what you see in Table 1, yet the

Precision-vs.-Recall curves for the two cases look so dramatically

different.

� In much academic literature, what you see for a

Precision-vs.-Recall curve is a smoothed version of the curve

shown in Figure 3.

� However, for real retrieval algorithms and real databases, the

curve could take any form along the lines of what you see in

Figures 1, 2, and 3.

� In all cases, though, the largest value of Precision at any rank is

bounded by 1.0, which happens when all of the items retrieved up

to that rank are relevant to the query. And the Relevance is also

bounded by 1.0, which happens at a rank at which all the

retrievals up to that rank include all documents relevant to the

13

Significance Testing for IR An RVL Tutorial by Avi Kak

Ranked list of the docs retrieved Is the retrieved document

for query q that has 5 relevant relevant to query q ?
docs in the database

d1 yes

d2

d3 yes

d4

d5

d6 yes

d7

d8

d9

d10 yes

d11

d12

d13

d14

d15 yes
.
.
.

d100

Table 5: A third example of the 100 items returned in the form of a ranked list
by an IR algorithm for a query q.

14

Significance Testing for IR An RVL Tutorial by Avi Kak

rank Precision at rank Recall at rank

1 P@1 = 1 R@1 = 1/5

2 P@2 = 1/2 R@2 = 1/5

3 P@3 = 2/3 R@3 = 2/5

4 P@4 = 2/4 = 1/2 R@4 = 2/5

5 P@5 = 2/5 R@5 = 2/5

6 P@6 = 3/6 = 1/2 R@6 = 3/5

7 P@7 = 3/7 R@7 = 3/5

8 P@8 = 3/8 R@8 = 3/5

9 P@9 = 3/9 R@9 = 3/5

10 P@10 = 4/10 = 2/5 R@10 = 4/5

11 P@11 = 4/11 R@11 = 4/5

12 P@12 = 4/12 = 1/3 R@12 = 4/5

13 P@13 = 4/13 R@13 = 4/5

14 P@14 = 4/14 R@14 = 4/5

15 P@15 = 5/15 = 1/3 R@15 = 5/5 = 1

16 P@15 = 5/16 R@16 = 5/5 = 1
. . .
. . .
. . .

100 P@100 = 5/100 R@100 = 5/5 = 1

Table 6: P@r and R@r values at different ranks for the retrieval result shown in Table 5.

15

Significance Testing for IR An RVL Tutorial by Avi Kak

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

 r=1

 r=2

 r=3

 r=4

 r=5

 r=6

 r=7

 r=8
 r=9

 r=10
 r=11
 r=12
 r=13
 r=14

 r=15

 r=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

 r=1

 r=2

 r=3

 r=4

 r=5

 r=6

 r=7

 r=8
 r=9

 r=10
 r=11
 r=12
 r=13
 r=14

 r=15

 r=100

Figure 3: Shown above is a point-plot of P@r vs. R@r for the retrieval in

Table 5. Shown below is a curve drawn through the point plot.

16

Significance Testing for IR An RVL Tutorial by Avi Kak

query.

� To further enhance our intuitions about the nature of

Precision-vs.-Recall curves, in the next two sections I will consider

the following two limiting cases of retrieval algorithms: (1)

Retrieval by a monkey (meaning a completely random retrieval

from a database); and (2) a perfect retrieval algorithm that always

returns the relevant documents at the topmost ranks.

17

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

2: Precision vs. Recall for Retrieval by a
Monkey

� Monkeys are my favorite animals. You can see them frolicking in

the trees in several parts of India. Baby monkeys particularly are

a lot of fun to watch.

� Let’s have a monkey retrieve documents for us from a database.

Not to underestimate the intelligence of the monkeys, let’s just

say that the monkey is bored and it merely carries out a purely

random retrieval.

� Let D represent a database of documents and let’s assume that,

on the average, c percent of the database is relevant to each query

in the Q of queries.

� Let’s further assume that the the relevant documents are

uniformly distributed in the ranked list of documents

retrieved by the monkey.

� Let’s now consider the following values for the rank r:

{c|D|, 2c|D|, 3c|D|, . . . , |D|}, where |D| is the cardinality of the

18

Significance Testing for IR An RVL Tutorial by Avi Kak

set D. If c = 0.1, we will consider the following ranks:

{ |D|
10
,
2|D|
10

,
3|D|
10

, . . . , |D|}.

� Consider the first in the list of rank values shown above:

r = c|D|. At this rank, we can expect that, on the average, there

will be c fraction of the r documents that will be relevant to the

query. That gives us a total of c2|D| relevant retrievals up to rank

r. So we can set R@r = c2|D|
c|D| = c since c|D| is the total number

of documents relevant to any query.

� For obvious reasons, when rank r is c|D|, P@r will be given by

P@r = c2|D|
c|D|

= c since, up to this rank the total number of

documents that are retrieved is c|D| and since the numerator

remains the same in the precision and recall calculations.

� We can carry out similar reasoning at rank r = 2c|D|. On

account of the uniform distribution of the relevant documents in

the ranked retrieved list of |D| documents, we expect that, on the

average, there will be c fraction of the 2c|D| documents that will

be relevant. Therefore, at the new rank we are considering, the

number of retrieved documents that will be relevant will, on the

average, be 2c2|D|. Now we can use this as the numerator in our

P@r and R@r calculation at this new rank.

� Continuing our reasoning for rank r = 2c|D|, since the

19

Significance Testing for IR An RVL Tutorial by Avi Kak

denominator for P@r is the rank itself, we get P@r = 2c2|D|
2c|D|

= c,

which is the same as the precision at the previous rank we

considered. And since the denominator for R@r is the total

number of relevant documents, which is c|D|, we get

R@r = 2c2|D|
c|D|

= 2c.

� If you continue this line of reasoning, you will see the following

sort of Recall-Precision curve for retrieval by a monkey:

^ |

| |

|

P |

|

|

|

c | * * * * * * * *

|

|

|

| ______________________________________

c 2c 3c 4c ... 1.0

R --->

20

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

3: Precision vs. Recall for Retrieval by an
Oracle

� We again assume that D represents the entire database and that,

on the average, fraction c of the database is relevant to each query

q in the set Q of queries.

� As before, let’s examine retrievals at the ranks:

{c|D|, 2c|D|, 3c|D|, . . . , |D|}. If c = 0.1, we will consider as

before the following ranks: { |D|
10 ,

2|D|
10 ,

3|D|
10 , . . . , |D|}.

� Consider the first in the list of rank values shown above: r = c|D|.

At this rank, we can expect that the oracle, being an oracle after

all, will recover all the relevant c|D| documents. That is, of all the

c|D| retrieved documents, every one of them will be relevant.

� This implies that, for any query qi in Q, both the precision and

the recall at rank r = c|D| will, on the average, be equal to 1. In

other words, if it were possible to somehow average out the

precision values in a small neighborhood around the rank

r = c|D|, we would see P@r = 1 and R@r = 1 at that rank.

Note that we are already at the end of the Recall axis.

21

Significance Testing for IR An RVL Tutorial by Avi Kak

� Consider next the rank r = 2c|D|. At this rank, for any of the

queries, R@r will again be 1. On the other hand, on the average

considering all the queries, the P@r will now be 0.5 since only

half the retrieved documents will be relevant for any query. In

other words, when r is 2c|D|, P@r = 0.5 and R@r = 1.

� If we carry out the same kind of reasoning at rank r = 3c|D|, we

get P@r = 1
3 and R@r = 1 for that value of r.

� Finally, at rank r = |D|, we get P@r = c|D|
|D|

= c and R@r = 1.

� If we plot the values obtained, we get

|

1.0 | * 1.0

|

|

|

^ | * 1/2

| |

|

P | * 1/3

|

0.0 | _____________________________________* c

0.0 1.0

R --->

� We see that for the oracle, if we only consider the ranks

{c|D|, 2c|D|, 3c|D|, . . . , |D|}, all calculated precision vs. recall

values fall on a vertical line at the end point of the Recall axis.

22

Significance Testing for IR An RVL Tutorial by Avi Kak

� The “problem” that all of the P-R values fall on a vertical at the

end of the R axis is caused by the fact that after the rank

r = c|D|, the first c|D| retrievals will always be the same for any

query — these would be all the documents that are relevant to the

query.

� Now consider the following additional ranks that are within the

first of the rank values considered so far. That is, we will consider

ranks within the interval [1, c|D|]. In particular, we will consider

the ranks {1
4c|D|, 12c|D|, 34c|D|, c|D|}.

� At rank r = 1
4c|D|, all of the 1

4c|D| documents will be relevant,

causing the precision to equal 1. However, the recall at this rank

will only be 1
4 since only a fourth of all the relevant documents

will be retrieved. So we have P@r = 1.0 and R@r = 0.25 when r

is equal to r = 1
4
c|D|.

� Similar reasoning leads to the fact that, on the average for any of

the queries, P@r = 1.0 and R@r = 0.5 when rank r is equal to
1
2
c|D|. And P@r = 1.0 and R@r = 0.75 when r equals 3

4
c|D|.

� We previously calculated the values P@r = 1.0 and R@r = 1.0

when r equals c|D|.

� When we place all of these points on the recall-precision curve, we

23

Significance Testing for IR An RVL Tutorial by Avi Kak

get for an oracle:

|

|

1.0 | * * * *

|

|

|

^ | * 1/2

| |

|

P | * 1/3

|

| _____________________________________* c

0.0 0.25 0.5 0.75 1.0

R --->

24

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

4: Average Precision for a Query qi

� Given a query qi, let the documents in the database relevant to

this query by denoted by the set {di1, di2, di3, . . . , dim}.

� And let the ranks at which these documents are retrieved be

denoted by the set {ri1, ri2, ri3, . . . , rim}, where we assume that

the rank rik corresponds to the document dik in the list of

database documents relevant to query qi.

� Using the notation presented in the previous section, let P@rik
and R@rik denote the Precision and Recall at rank rik .

� We can say that the relevant document dik for query qi is

retrieved with precision P@rik .

� The Average Precision associated with all the database

documents that are relevant to query qi is then given by

Pav(qi) =
1

m

m∑

k=1

P@rik

� Very roughly speaking, Pav(qi) equals the area under the

25

Significance Testing for IR An RVL Tutorial by Avi Kak

Precision-vs.-Recall curve for query qi. To justify this claim, let’s

say that this curve looks like

| .

| .

| .

^ | .

| | .

| .

P | .

| .

| .

| .

0.0 1.0

R --->

� Each point on the Recall axis for which we have at least one value

for Precision will correspond to one of the relevant documents for

query qi. Considering that the Recall values are confined to the

interval [0, 1], the average Precision value calculated at the

sampling points for Recall is approximately the area under the

curve.

26

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

5: Mean Average Precision (MAP) for a
Retrieval Algorithm

� One way to characterize the retrieval power of an information

retrieval algorithm (vis-a-vis a given database) with a single

numeric measure is through what is known as the Mean

Average Precision (MAP).

� You have already seen in Section 4 the formula for the Average

Precision you can get from a retrieval algorithm for a given query

qi.

� Assume now that we have a set of queries Q = {q1, q2, . . . , qn} for

the purpose of evaluating the retrieval power of an algorithm and

that we know in advance what database documents are relevant

to each query.

� Let’s use mi to denote the number of relevant documents in the

database for query qi.

� The MAP value is obtained by the taking the mean of the

Average Precision Pav(qi) over all the queries in the set Q:

27

Significance Testing for IR An RVL Tutorial by Avi Kak

MAP =
1

|Q|

∑

qi∈Q

Pav(qi)

=
1

|Q|

∑

qi∈Q

1

mi

mi∑

k=1

P@rik

� The MAP for our monkey retriever is c where c is the fraction of

the database relevant to each query in Q and D the database. For

a database consisting of, say, 1000 documents and with c equal to

0.1, the MAP for the monkey retriever would be 0.1. On the other

hand, the MAP for the oracle retriever equals 1.0.

� One more thing before moving on to the next topic: There is the

interesting question of how to look at the Precision-Recall curve.

As you saw in the Precision vs. Recall plots shown previously, the

curve is obviously not a function with Precision as the range and

Recall as the domain — since it is possible to have more than one

value of P@r for a given value of R@r. It is best to think of this

curve as a parametric curve in the (Recall, P recision)-plane with rank r

as the parameter, in much the same way as the parametric forms

for circles, ellipses, etc. As you vary the value of the parameter,

you generate various points on the curve.

28

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

6: Algorithm::VSM — A Perl Module for
Information Retrieval and Significance Testing

� To become more deeply familiar with the notions related to the

characterization of retrieval accuracy, it is good to have access to

a retrieval engine. Unless you have one of your own, you might

want to download my Perl module Algorithm::VSM from the

open-source CPAN archive:

http://search.cpan.org/~avikak/Algorithm-VSM/lib/Algorithm/VSM.pm

� Algorithm::VSM is a pure-Perl implementation for constructing a

Vector Space Model (VSM) or a Latent Semantic Analysis Model

(LSA) of a collection of documents and for using such a model for

efficient retrieval of documents in response to search words.

� The rest of this section is devoted to making you familiar with

this module. But first let’s talk about VSM and LSA:

� VSM and LSA models have been around for a long time in the

Information Retrieval (IR) community.

� More recently VSM and LSA models have been shown to be

29

http://search.cpan.org/~avikak/Algorithm-VSM/lib/Algorithm/VSM.pm

Significance Testing for IR An RVL Tutorial by Avi Kak

effective in retrieving files/documents from software libraries. For

an account of this research, see the paper by Shivani Rao and

Avinash Kak:

http://portal.acm.org/citation.cfm?id=1985451.

� VSM modeling consists of:

– Extracting the vocabulary used in a corpus.

– Stemming the words so extracted. Stemming means that closely related words like
‘programming’ and ‘programs’ are reduced to the common root word ‘program’.

– Eliminating the designated stop words from the vocabulary. These are the
non-discriminating words that can be expected to exist in virtually all the
documents.

– Constructing document vectors for the individual files in the corpus. An element of a
document vector is the frequency of occurrence of the word corresponding to that
element position.

– Multiplying the word frequencies in each document vector by the word IDFs. IDF
stands for Inverse Document Frequency. IDF weighting of the words in the
document vectors reduces the importance of the words that are non-discriminatory
with respect to the retrieval of the documents. A typical formula for calculating the
IDF weight for a word is through the logarithm of the ratio of the total number of
documents to the number of documents in which the word appears. So, if a word
were to appear in all the documents, its IDF would be zero. We will simply refer to
the collection of IDF-modified document vectors taken together as the
‘term-frequency’ matrix for the corpus.

– Constructing a query vector for the search query after the query is subject to the
same stemming, stop-word elimination, and IDF weighting rules that were applied to
the corpus. And, lastly,

– Using a similarity metric to return the set of documents that are most similar to the
query vector. The commonly used similarity metric is one based on the cosine
distance between two vectors. Also note that all the vectors mentioned here are of
the same size, the size of the vocabulary extracted from the corpus.

30

http://portal.acm.org/citation.cfm?id=1985451

Significance Testing for IR An RVL Tutorial by Avi Kak

� LSA modeling is a small variation on VSM modeling. Now you

take VSM modeling one step further by subjecting the

term-frequency matrix for the corpus to singular value

decomposition (SVD).

� By retaining only a subset of the singular values (usually the N

largest for some value of N), you can construct

reduced-dimensionality vectors for the documents and the queries.

� In VSM, the size of the document vectors and the query vectors is

equal to the size of the vocabulary. For large corpora, this size

may involve tens of thousands of elements — this can slow down

the VSM modeling and retrieval process. So you are very likely to

get faster performance with retrieval based on LSA modeling,

especially if you store the model once constructed in a database

file on the disk and carry out retrievals using the disk-based

model.

� The Algorithm::VSM module provides the following

functionality:

– You can construct an instance of the module class by

my $vsm = Algorithm::VSM->new(

break_camelcased_and_underscored => 1,

case_sensitive => 0,

corpus_directory => "",

corpus_vocab_db => "corpus_vocab_db",

doc_vectors_db => "doc_vectors_db",

file_types => $my_file_types,

lsa_svd_threshold => 0.01,

max_number_retrievals => 10,

31

Significance Testing for IR An RVL Tutorial by Avi Kak

min_word_length => 4,

normalized_doc_vecs_db => "normalized_doc_vecs_db",

query_file => "",

relevancy_file => $relevancy_file,

relevancy_threshold => 5,

save_model_on_disk => 0,

stop_words_file => "",

use_idf_filter => 1,

want_stemming => 1,

);

– The values shown on the right of the big arrows are the default values for the
constructor parameters. [The actual constructor parameters you’d need to set would depend on how

you want to use the module. For example, if you do not wish to save the model information in disk-based

hash tables, you’d not need to set the three ‘ db’ parameters listed above.]

– The twelve scripts that you will find in the ‘examples’ directory of the module
installation directory show how you call up the constructor for different usages of
this module.

– After you have constructed a new instance of the Algorithm::VSM class, you must
now scan the corpus documents for constructing the corpus vocabulary. This you do
by:

$vsm->get_corpus_vocabulary_and_word_counts();

– The only time you do NOT need to call this method is when you are using a
previously constructed disk-stored VSM or LSA model for retrieval.

– If you would like to see corpus vocabulary as constructed by the previous call, make
the call

$vsm->display_corpus_vocab();

– Note that this is a useful thing to do only on small test corpora. If you must call this
method on a large corpus, you might wish to direct the output to a file. The corpus
vocabulary is shown automatically when debug option is turned on.

– Next you must construct document vectors. This is a necessary step after the
vocabulary used by a corpus is constructed. (Of course, if you will be doing
document retrieval through a disk-stored VSM or LSA model, then you do not need

– to call this method. You construct document vectors through the following call:

32

Significance Testing for IR An RVL Tutorial by Avi Kak

$vsm->generate_document_vectors();

– If you would like to see the document vectors constructed by the previous call, make the call:

$vsm->display_doc_vectors();

– After you have constructed a VSM model, you call the following method for
document retrieval for a given query. The call syntax is:

my $retrievals = $vsm->retrieve_with_vsm(\@query);

The argument, @query, is simply a list of words that you wish to use for retrieval.

– You can display the retrieved document names by calling this method using the
syntax:

$vsm->display_retrievals($retrievals);

where $retrievals is a reference to the hash returned by a call to one of the
retrieve methods.

– If after you have extracted the corpus vocabulary and constructed document vectors,
you would do your retrieval with LSA modeling, you need to make the following call:

$vsm->construct_lsa_model();

– The SVD decomposition that is carried out in LSA model construction uses the
constructor parameter lsa svd threshold to decide how many of the singular
values to retain for the LSA model.

– A singular value is retained only if it is larger than the lsa svd threshold fraction
of the largest singular value.

– After you have built an LSA model through the call to construct lsa model(), you
can retrieve the document names most similar to the query by:

my $retrievals = $vsm->retrieve_with_lsa(\@query);

– Subsequently, you can display the retrievals by calling the
display retrievals($retrieval) method described previously.

33

Significance Testing for IR An RVL Tutorial by Avi Kak

– If you have set the constructor option save model on disk, invoking the methods
get corpus vocabulary and word counts() and generate document vectors()

will automatically deposit the VSM model in database files named with the
constructor parameters corpus vocab db and doc vectors db. Subsequently, you
can carry out retrieval by directly using this disk-based VSM model for speedier
performance. In order to do so, you must upload the disk-based model by

$vsm->upload_vsm_model_from_disk();

– Subsequently you call

my $retrievals = $vsm->retrieve_with_vsm(\@query);

$vsm->display_retrievals($retrievals);

for retrieval and for displaying the results.

– The rest of this section goes into the calls you must make for precision and recall
calculations if you want to measure the retrieval accuracy that you will get with your
constructor options.

– Before you can carry out precision and recall calculations to test the accuracy of
VSM and LSA based retrievals from a corpus, you need to have available the
relevancy judgments for the queries. (A relevancy judgment for a query is simply the
list of documents relevant to that query.) Relevancy judgments are commonly
supplied by the humans who are familiar with the corpus. But if such
human-supplied relevance judgments are not available, you can invoke the following
method to estimate them:

$vsm->estimate_doc_relevancies();

– For the above method call, a document is considered to be relevant to a query if it
contains several of the query words. As to the minimum number of query words that
must exist in a document in order for the latter to be considered relevant, that is
determined by the relevancy threshold parameter in the VSM constructor.

– But note that this estimation of document relevancies to queries is NOT for serious
work. The reason for that is because ultimately it is the humans who are the best
judges of the relevancies of documents to queries.

– The humans bring to bear semantic considerations on the relevancy determination
problem that are beyond the scope of this module. The generated relevancies are
deposited in a file named by the constructor parameter relevancy file.

34

Significance Testing for IR An RVL Tutorial by Avi Kak

– If you would like to see the document relevancies generated by the previous method,
you can call

$vsm->display_doc_relevancies()

– After you have created or obtained the relevancy judgments for your test queries,
you can make the following call to calculate Precision@rank and Recall@rank:

$vsm->precision_and_recall_calculator(’vsm’);

or

$vsm->precision_and_recall_calculator(’lsa’);

depending on whether you are testing VSM-based retrieval or LSA-based retrieval.

– A call to precision and recall calculator() will normally be followed by the
following call

$vsm->display_average_precision_for_queries_and_map();

for displaying the Precision@rank and Recall@rank values and the final MAP value
for the retrieval algorithm.

– The call shown earlier will also display the Average Precision for each query. As
defined in Section 4 of this tutorial, the Average Precision for a query is obtained by
averaging the precision values over all the documents relevant to that query. And the
value of MAP that is printed out is the mean of the Average Precision values over all
the queries.

– When human-supplied relevancies are available, you can upload them into the
program by calling

$vsm->upload_document_relevancies_from_file();

These relevance judgments will be read from a file that is named with the
relevancy file constructor parameter.

– If in your own script you want access to the average precision values for the different
queries, you call

$vsm->get_query_sorted_average_precision_for_queries()

You will need to call this method if you are carrying out significance testing for
comparing two retrieval algorithms (VSM or LSA with difference choices for some of
the constructor parameters).

35

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

7: Convenience Scripts in the examples

Directory of the Module Algorithm::VSM

� The ‘examples’ directory of the Algorithm::VSM module

contains the following scripts for you:

For Basic VSM-Based Retrieval: For basic VSM-based model construction and retrieval,
run the script:

retrieve_with_VSM.pl

For a Continuously Running VSM Search Engine: If you want to run an infinite loop for
repeated retrievals from a VSM model, run the script:

continuously_running_VSM_retrieval_engine.pl

You can create a script similar to this for doing the same with the LSA model.

For Storing the Model Information in Disk Files: For storing the model information in
disk-based DBM files that can subsequently be used for both VSM and LSA
retrieval, run the script:

retrieve_with_VSM_and_also_create_disk_based_model.pl

For VSM-Based Retrieval with a Disk-Stored Model: If you have previously run a script like
retrieve with VSM.pl and no intervening code has modified the disk-stored VSM
model of the corpus, you can run the script

retrieve_with_disk_based_VSM.pl

This would obviously work faster at retrieval since the VSM model would NOT need
to constructed for each new query.

For Basic LSA-Based Retrieval: For basic LSA-based model construction and retrieval, run
the script:

retrieve_with_LSA.pl

36

Significance Testing for IR An RVL Tutorial by Avi Kak

For LSA-Based Retrieval with a Disk-Stored Model: If you have previously run a script like
retrieve with LSA.pl and no intervening code has modified the disk-stored LSA
model of the corpus, you can run the script

retrieve_with_disk_based_LSA.pl

The retrieval performance of such a script would be faster since the LSA model
would NOT need to be constructed for each new query.

For Precision and Recall Calculations with VSM: To experiment with precision and recall
calculations for VSM retrieval, run the script:

calculate_precision_and_recall_for_VSM.pl

Note that this script will carry out its own estimation of relevancy judgments —
which in most cases would not be a safe thing to do.

For Precision and Recall Calculations with LSA: To experiment with precision and recall
calculations for LSA retrieval, run the script:

calculate_precision_and_recall_for_LSA.pl

Note that this script will carry out its own estimation of relevancy judgments —
which in most cases would not be a safe thing to do.

For P-R Calculations for VSM with Human-Supplied Relevancies: Precision and recall
calculations for retrieval accuracy determination are best carried out with
human-supplied judgments of relevancies of the documents to queries. If such
judgments are available, run the script:

calculate precision and recall from file based relevancies for VSM.pl

This script will print out the average precision for the different test queries and
calculate the MAP metric of retrieval accuracy.

For P-R Calculations for LSA with Human-Supplied Relevancies: If human-supplied
relevancy judgments are available and you wish to experiment with precision and
recall calculations for LSA-based retrieval, run the script:

calculate precision and recall from file based relevancies for LSA.pl

This script will print out the average precision for the different test queries and
calculate the MAP metric of retrieval accuracy.

To carry out significance tests on retrieval precision: If you wish to compare two retrieval
algorithms (say, VSM or LSA with different values for some of the constructor
parameters), try either

significance_testing.pl randomization

or

37

Significance Testing for IR An RVL Tutorial by Avi Kak

significance_testing.pl t-test

Significance testing consists of forming a null hypothesis that the two retrieval
algorithms you are comparing are the same from a black-box perspective and then
calculating what is known as the p-value that goes with the observed precision
difference between the two algorithms. If the p-value is less than, say, 0.05, you
reject the null hypothesis.

You can use either Randomization-based protocol or the Student-t Paired Distribution based protocol for a

significance test. The choice between the two is supplied as a command-line argument to the script, as

shown earlier.

To calculate a similarity matrix for a set of documents:

If you wish to calculate a similarity matrix for a given set of documents, run:

calculate_similarity_matrix_for_all_docs.pl

and

calculate_similarity_matrix_for_all_normalized_docs.pl

38

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

8: Comparing Retrieval Algorithms

� Let’s say we are given two different retrieval algorithms, A and B,

whose performance is characterized by their respective MAP

values. Obviously, if the difference between the MAP values is

large, we may assume that one is superior and leave it at that.

� Recall that the largest possible value for the area under the

Precision-Recall curve is 1. So, when we say that the difference

between the MAP values is large, we mean it is a significant

fraction of 1.

� But what if the difference between the MAP values is a small

fraction of 1?

� By running a statistical significance test on the results produced

by the two algorithms, we can tell which of the two algorithms is

superior. [The basic question we want answered is whether the performance of one algorithm is

within the “noise range” of the performance of the other algorithm. But how do you do that? Let’s say

you have a very large number N of queries at your disposal for testing the two algorithms. Now, instead

of subjecting each algorithm to all of the N queries all in one go, why not subject the algorithms to

randomly chosen subsets of the N queries? Assuming that these subsets are large enough so that you

can “trust” the performance numbers yielded by them, now you can create an estimate of the “noise”

39

Significance Testing for IR An RVL Tutorial by Avi Kak

associated with the performance of each algorithm. Significance testing gives us statistically sound

methods for doing these sorts of calculations.]

� To illustrate further with an example, let’s consider two different

singular-value acceptance thresholds for retrieval by the LSA

algorithm in the Algorithm::VSM module.

� Recall that a key step of the LSA algorithm is to carry out a

singular value decomposition (SVD) of the term-frequency matrix

whose size is V ×M , where V is the size of the vocabulary and

M the number of documents in the corpus. SVD factorization

amounts to expressing the V ×M term-frequency matrix A as

UΣV T = A.

� In the SVD factorization of the V ×M matrix A into UΣV T : (1)

the columns of the V ×M matrix U are orthogonal (that is,

UTU = I); (2) the M ×M matrix Σ is a diagonal matrix of the

singular values; and (3) the M ×M matrix V is square

orthogonal (that is, V −1 = V T). Also note that the columns of U

are the eigenvectors of AAT and the columns of V the

eigenvectors of ATA.

� Dimensionality reduction in LSA is accomplished by ignoring the

smallest of the singular values in the diagonal matrix Σ. This is

accomplished in the LSA code in the module Algorithm::VSM

by using the threshold lsa svd threshold.

40

Significance Testing for IR An RVL Tutorial by Avi Kak

� In Algoirthm::VSM, all singular values smaller than the

lsa svd threshold fraction of the largest singular value are

ignored when constructing an LSA model of a corpus.

� When dealing with corpora containing tens of thousands of

documents, the retrieval speed can be improved significantly by

making the threshold lsa svd threshold as large as possible.

However, one has to keep in the mind the fact that if this

threshold is set to too large a value, there could be a significant

loss in retrieval precision.

� The good news is that, in general, the retrieval precision does

NOT decrease monotonically as the value of the threshold

lsa svd threshold is increased.

� So, as you are playing with different values of

lsa svd threshold, and you find two (or more) that show

closely related values for Average Precision for your test set of

queries, you are left facing the question as to which version of the

LSA algorithm is really better.

� This question of ascertaining the best of a set of algorithms with

seemingly closely related values for retrieval precision becomes all

the more important in our context because of inherent noise in the

calculation of Precision@rank and Recall@rank values. The

41

Significance Testing for IR An RVL Tutorial by Avi Kak

main source of this noise is the human-to-human variability in the

relevancy judgments.

� Shown in Table 7 are the Average Precision values for a set of

queries that you will find in the test queries.txt file in the

’examples’ sub-directory of the main installation directory for the

Algorithm::VSM module. The second column shows the

Average Precision values for retrieval by LSA with

lsa svd threshold set to 0.02 and the third column with the

same threshold set to 0.05.

� Note that the two versions of the LSA algorithm used for

producing the results shown in Table 7 possess what seems like

comparable overall average precision for the queries. As shown in

the fourth column, for some of the queries (those with ’+’ in the

fourth column), the second version of LSA works better, but for

others (those with ’-’ in the fourth column), the first works better.

There are also queries (with ’=’ in the fourth column) for which

the two algorithms yield the same retrieval precision.

� Given this query-to-query variation, and in light of the

relevancy-related noise associated with the calculation of average

precision, how can we say with confidence that one version of the

retrieval algorithm is better than the other? The answer to this

question is supplied by Significance Testing from statistics.

42

Significance Testing for IR An RVL Tutorial by Avi Kak

� A final note about the results shown in Table 7: These Average Precision

results were obtained with the queries in the file test queries.text and the relevancy judgments in the

file relevancy.txt of the ‘examples’ directory of the Algorithm::VSM module. IMPORTANT: When

you first install that module, please make a copy of relevancy.txt file for safe storage if you want to

reproduce the results shown in Table 7. That file is overwritten each time you execute the script

calculate precision and recall for LSA.pl or the script calculate

precision and recall for VSM.pl. These two scripts are meant to be used when human-supplied

relevancy judgments are not available and the module has to do the best it can in order to estimate the

relevancies.

43

Significance Testing for IR An RVL Tutorial by Avi Kak

Average Precision Average Precision Change in
Query with with Retrieval

lsa svd threshold lsa svd threshold Precision
= 0.02 = 0.05

q1 0.686 0.835 +

q2 0.931 0.931 =

q3 0.511 0.586 +

q4 0.161 0.293 +

q5 0.091 0.159 +

q6 0.045 0.045 =

q7 0.222 0.142 −

q8 0.100 0.100 =

q9 0.020 0.019 −

q10 0.093 0.192 +

q11 0.147 0.093 −

q12 0.015 0.015 =

q13 0.030 0.278 +

q15 0.212 0.210 −

q16 0.273 0.377 +

q18 0.119 0.227 +

q19 0.213 0.275 +

q20 0.504 0.461 −

Table 7: Average Precision values for 20 queries in the test queries.txt file.

44

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

9: The Three Ingredients of Significance
Testing

� Let’s refer to the LSA algorithm with the singular-value

rejection-threshold, denoted by lsa svd threshold, set to 0.02

as LSA-1 and with same threshold set to 0.05 as LSA-2. Our

question now is whether one can be considered to be superior to

the other or whether, given a black-box perspective on the two

algorithms, the two are the same.

� The value of MAP for LSA-1 is 0.244 and that for LSA-2 is 0.295.

The magnitude of the difference between the two is 0.051. The

question we want to answer with significance testing is whether a

precision difference of 0.051 is statistically significant?

� The goal of this section is to show how significance testing can be

used to answer the above question.

� A significance test involves the following three steps:

– (1) Specifying the Null Hypothesis:

A typical null hypothesis in our context would be that the two algorithms LSA-1 and
LSA-2 are the same. The word “same” here means that, when considered as black
boxes, the two algorithms appear to behave the same way vis-a-vis the outside world.

45

Significance Testing for IR An RVL Tutorial by Avi Kak

Another way to say the same thing would be that, if the null hypothesis were to be
true, the two algorithm would produce performance numbers that are identically
distributed with regard to their statistical properties.

The null hypothesis will involve something that is known as a test statistic whose
values can be used to distinguish between the case when the null hypothesis is true
and when it is false.

– (2) Specifying the Test Statistic: We will use the difference between the MAP
values for the two algorithms as our test statistic. Obviously, if the null hypothesis
were to be true, the difference between the MAP values produced by the two
algorithms would “ordinarily” cluster around 0. As to why only “ordinarily”, see
Section 13. [You see, we are interested in the different values of the test statistic for different

randomizations of what it took to produce the observed value that is being subject to significance

testing.]

– (3) Calculating the p-Value and Comparing It with the Significance Level:
The p-value (short for probability-value) associated with a particular observed value
of the test statistic is the cumulative probability of the test-statistic taking on values
in the tails of a two-sided distribution, the tails being specified by the observed
value. [If the observed value for the test-statistic is θ, we are interested in the probability mass

associated with the test-statistic taking on values in the intervals (−∞, θ) and (θ,∞).] The
significance-level is a user-defined threshold. If the p-value is less than the
significance level, we consider the null hypothesis to be false.

� In the next section, we talk about how to go about calculating the

p-value for observed values of the test statistic.

� As mentioned at the beginning of this section, we are interested in

the retrieval accuracy difference of 0.051. So we want to calculate

the p-value associated with the difference of the two observed

MAP values being 0.051.

� The smaller the p-value, the less tenable the null hypothesis.

46

Significance Testing for IR An RVL Tutorial by Avi Kak

� A common practice is to set the significance level at 0.05.

That would imply rejecting the null-hypothesis if the p-value is

less than 0.05.

� If the LSA-1 and LSA-2 were to be nearly identical (which we

could do by making the lsa svd threshold parameter settings

in the two algorithms to be nearly the same), the p-value

associated with a precision difference like 0.051 could be

significantly greater than the commonly-used significance level of

0.05.

47

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

10: Calculating p-Values for the
Randomization Based Test of the Null

Hypothesis

� For the purpose of this test, we put to use the null hypothesis and

momentarily forget about which of the two algorithms, LSA-1 or

LSA-2, produced the Average Precision value in the second

column and which produced the value in the third column in each

row of the table shown in Table 7.

� So, as we examine each row of Table 7, we randomly assign LSA-1

or LSA-2 to the values in the second column. Obviously, when a

row-entry in the second column gets, say, LSA-1, the

corresponding entry in the third column will get LSA-2, and vice

versa.

� An example of this random assignment of LSA-1 and LSA-2

labels to the data shown Table 7 is presented in Table 8. For the

purpose of the test here, we consider the red values to have been

produced by LSA-1 and the blue values to have been produced by

LSA-2 under the null hypothesis that states that the algorithms

LSA-1 and LSA-2 are the same.

48

Significance Testing for IR An RVL Tutorial by Avi Kak

� If N is the total number of queries, we will have 2N ways of

assigning the LSA-1 and LSA-2 labels to the values in the second

and the third rows of Table 8. In other words, we have 2N ways of

generating the red-blue assignments shown in Table 8. We can

also say that we have 2N permutations of the LSA-1 and LSA-2

labels over the rows in Table 8.

� We next calculate the MAP value for each permutation for the

assigned LSA-1 and LSA-2 labels, MAP merely being the mean of

the Average Precision values over all the queries in our set of

test queries.

� The MAP for LSA-1 (the red entries on Table 8) is 0.272 and that

for LSA-2 (the blue entries in the same table) is 0.261. Therefore,

the value of the test statistic for the LSA-1 and LSA-2 label

assignments shown in Table 8 is 0.011.

� In Randomization test, we randomly sample the space of 2N

possibilities for the permutations of the LSA-1 and LSA-2 labels to

the average precision data, where N is the number of queries. And

for each permutation we calculate the value of the test statistic.

� Let’s say we carry out these calculations for P number of

permutations. We now count the number of time the test statistic

for a permutation is less than the negative of the observed value

49

Significance Testing for IR An RVL Tutorial by Avi Kak

q1 0.686 0.835

q2 0.931 0.931

q3 0.511 0.586

q4 0.161 0.293

q5 0.091 0.159

q6 0.045 0.045

q7 0.222 0.142

q8 0.100 0.100

q9 0.020 0.019

q10 0.093 0.192

q11 0.147 0.093

q12 0.015 0.015

q13 0.030 0.278

q15 0.212 0.210

q16 0.273 0.377

q18 0.119 0.227

q19 0.213 0.275

q20 0.504 0.461

Table 8: red entry: Avg. Precision value assumed to be produced by LSA-1. blue entry: Avg. Precision value
assumed to be produced by LSA-2.

50

Significance Testing for IR An RVL Tutorial by Avi Kak

that is being subject to significance testing or greater than the

positive of this value. This is illustrated by the following Perl code

snippet.

my $OBSERVED_VALUE = $MAP_Algo_1 - $MAP_Algo_2;

foreach (@test_statistic) {

$count++ if $_ <= -1 * abs($OBSERVED_VALUE);

$count++ if $_ > abs($OBSERVED_VALUE);

}

my $p_value = $count / @test_statistic;

where $MAP Algo 1 and $MAP Algo 2 are the MAP values that

characterize the retrieval performance for a given set of test

queries for the algorithms LSA-1 and LSA-2. It is the value of the

variable $OBSERVED VALUE that is subject to significance testing.

� As mentioned earlier, a common practice is that if the p-value

thus calculated is less than the prescribed significance level of

0.05, we reject the null hypothesis. Obviously, rejection of the null

hypothesis means that the two algorithms LSA-1 and LSA-2 are

NOT the same.

� Shown below is the code for significance testing with both

randomization and Student’s t-test. A brief review of the code

follows the code itself. This script is taken from the ‘examples’

directory of the module Algorithm::VSM, Version 1.1 or higher.

#!/usr/bin/perl -w

#

significance_testing.pl

#

51

Significance Testing for IR An RVL Tutorial by Avi Kak

This script is in the ’examples’ directory of Version

1.1 and higher of the Algorithm::VSM module available at CPAN.

#

use strict;

use Algorithm::VSM;

my $debug_signi = 0;

#

#

die "Only one command-line arg allowed, which must either be " .

"’randomization’ or ’t-test’\n" unless @ARGV == 1;

my $significance_testing_method = shift @ARGV;

die "The command-line argument must be either " .

"’randomization’ or " . "’t-test’ for " .

"this module to be useful."

if ($significance_testing_method ne ’randomization’) and

($significance_testing_method ne ’t-test’);

print "Proceeding with significance testing based on

$significance_testing_method\n";

my $MAX_ITERATIONS = 100000;

my $THRESHOLD_1 = 0.02; # for LSA-1

my $THRESHOLD_2 = 0.05; # for LSA-2

my $corpus_dir = "corpus";

my $query_file = "test_queries.txt";

my $stop_words_file = "stop_words.txt";

my $corpus_vocab_db = "corpus_vocab_db";

my $doc_vectors_db = "doc_vectors_db";

my $lsa_doc_vectors_db = "lsa_doc_vectors_db";

my $relevancy_file = "relevancy.txt";

Significance testing is applied to the output of two

retrieval algorithms. We want to know if the difference

between the MAP values for the two algorithms are

statistically significant. Our example here is based on

LSA retrieval algorithms with different values for the

singular value acceptance threshold parameter lsa_svd_threshold.

For the null hypothesis, we will assume that the two algorithms

are the same. Our test statistic will be the difference between

the MAP values for the two algorithms.

#

################# Algorithm LSA-1 #######################

#

my $lsa1 = Algorithm::VSM->new(

corpus_directory => $corpus_dir,

corpus_vocab_db => $corpus_vocab_db,

doc_vectors_db => $doc_vectors_db,

lsa_doc_vectors_db => $lsa_doc_vectors_db,

stop_words_file => $stop_words_file,

query_file => $query_file,

want_stemming => 1,

lsa_svd_threshold => $THRESHOLD_1,

52

Significance Testing for IR An RVL Tutorial by Avi Kak

relevancy_file => $relevancy_file,

);

$lsa1->get_corpus_vocabulary_and_word_counts();

$lsa1->generate_document_vectors();

$lsa1->construct_lsa_model();

$lsa1->upload_document_relevancies_from_file();

$lsa1->precision_and_recall_calculator(’lsa’);

my $avg_precisions_1 =

$lsa1->get_query_sorted_average_precision_for_queries();

my $MAP_Algo_1 = 0;

map {$MAP_Algo_1 += $_} @$avg_precisions_1;

$MAP_Algo_1 /= @$avg_precisions_1;

print "MAP value for LSA-1: $MAP_Algo_1\n";

print "Avg precisions for LSA-1: @$avg_precisions_1\n"

if $debug_signi;

#

#

################# Algorithm LSA-2 #####################

#

#

my $lsa2 = Algorithm::VSM->new(

corpus_directory => $corpus_dir,

corpus_vocab_db => $corpus_vocab_db,

doc_vectors_db => $doc_vectors_db,

lsa_doc_vectors_db => $lsa_doc_vectors_db,

stop_words_file => $stop_words_file,

query_file => $query_file,

want_stemming => 1,

lsa_svd_threshold => $THRESHOLD_2,

relevancy_file => $relevancy_file,

);

$lsa2->get_corpus_vocabulary_and_word_counts();

$lsa2->generate_document_vectors();

$lsa2->construct_lsa_model();

$lsa2->upload_document_relevancies_from_file();

$lsa2->precision_and_recall_calculator(’lsa’);

my $avg_precisions_2 =

$lsa2->get_query_sorted_average_precision_for_queries();

my $MAP_Algo_2 = 0;

map {$MAP_Algo_2 += $_} @$avg_precisions_2;

$MAP_Algo_2 /= @$avg_precisions_2;

print "MAP value for LSA-2: $MAP_Algo_2\n";

print "Average precisions for LSA-2: @$avg_precisions_2\n"

if $debug_signi;

This is the observed value for the test statistic that

will be subject to significance testing:

my $OBSERVED_t = $MAP_Algo_1 - $MAP_Algo_2;

print "\n\nMAP Difference that will be Subject to

53

Significance Testing for IR An RVL Tutorial by Avi Kak

Significance Testing: $OBSERVED_t\n\n";

#

#

#

################## Significance Testing ###################

#

#

my @range = 0..@$avg_precisions_1-1;

if ($debug_signi) {

my $total_number_of_permutations = 2 ** @range;

print "\n\nTotal num of permuts

$total_number_of_permutations\n\n";

}

#

For each permutation of the algorithm labels over the

queries, we will store the test_statistic in the array

@test_statistic.

my @test_statistic = ();

#

At each iteration, we create a random permutation of the

LSA-1 and LSA-2 labels over the queries as explained on

pages 48 through and 53 of my tutorial on Significance Testing.

For each assignment of average precision values to

LSA_1, we calculate the MAP value for LSA-1, and the

same for LSA-2. The difference between the two MAP

values is the value of the test_statistic for that

iteration. Our goal is create test_statistic values for,

say, 100,000 iterations of this calculation. In the

itself, LSA-1 is represented by algo_1 and LSA-2 by algo_2.

my $iter = 0;

while (1) {

Here is the logic we use for permuting the algo_1 and

algo_2 labels over the average precision values. We

first create a random permutation of the integers

between 0 and the size of the query set. We refer to

this permuted list as permuted_range in what follows.

We then walk through the elements of the list

permuted_range and at each position test when the

value at that position is less than or greater than

half the size of the number of queries. This

determines which of the two avg. precision values for

a given query gets algo_1 label and which gets the

algo_2 label.

my @permuted_range = 0..@range-1;

fisher_yates_shuffle(\@permuted_range);

my @algo_1 = ();

my @algo_2 = ();

foreach (0..@range-1) {

if ($permuted_range[$_] < @range / 2.0) {

push @algo_1, $avg_precisions_1->[$_];

push @algo_2, $avg_precisions_2->[$_];

} else {

54

Significance Testing for IR An RVL Tutorial by Avi Kak

push @algo_1, $avg_precisions_2->[$_];

push @algo_2, $avg_precisions_1->[$_];

}

}

my $MAP_1 = 0;

my $MAP_2 = 0;

if ($debug_signi) {

print "\n\nalgo_1 and algo_2 average precisions:\n\n";

print "\npretend produced by algo 1: @algo_1\n\n";

print "pretend produced by algo 2: @algo_2\n";

}

map {$MAP_1 += $_} @algo_1;

map {$MAP_2 += $_} @algo_2;

$MAP_1 /= @range;

$MAP_2 /= @range;

if ($debug_signi) {

print "\nMAP_1: $MAP_1\n";

print "MAP_2: $MAP_2\n\n";

}

$test_statistic[$iter] = $MAP_1 - $MAP_2;

last if $iter++ == $MAX_ITERATIONS;

print "." if $iter % 100 == 0;

}

if ($significance_testing_method eq ’randomization’) {

print "test-statistic values for different permutations:

@test_statistic\n" if $debug_signi;

This count keeps track of how many of the

test_statistic values are less than and greater than

the value in $OBSERVED_t

my $count = 0;

foreach (@test_statistic) {

$count++ if $_ <= -1 * abs($OBSERVED_t);

$count++ if $_ > abs($OBSERVED_t);

}

my $p_value = $count / @test_statistic;

print "\n\n\nTesting the significance of the test

statistic: $OBSERVED_t\n\n";

print "\n\np_value for THRESHOLD_1 = $THRESHOLD_1 and

THRESHOLD_2 = $THRESHOLD_2: $p_value\n\n";

} elsif ($significance_testing_method eq ’t-test’) {

my $mean = 0;

my $variance = 0;

my $previous_mean = 0;

my $index = 0;

map { $index++;

$previous_mean = $mean;

$mean += ($_-$mean)/$index;

$variance = $variance*($index-1)+($_-$mean) *

($_-$previous_mean);

$variance /= $index;

55

Significance Testing for IR An RVL Tutorial by Avi Kak

} @test_statistic;

print "\n\nMAP Difference that will be Subject to \

Significance Testing: $OBSERVED_t\n\n";

my $normalized_bound;

my $p_value;

if ($variance > 0.0000001) {

$normalized_bound = ($OBSERVED_t - $mean) / sqrt($variance);

print "Normalized bound: $normalized_bound\n\n";

$p_value = 2*(1-cumulative_distribution_function(abs(

$normalized_bound)));

} else { $p_value = 1.0; }

print "\n\n\nTesting the significance of the \

test statistic: $OBSERVED_t\n\n";

print "\n\np_value for THRESHOLD_1 = $THRESHOLD_1 \

and THRESHOLD_2 = $THRESHOLD_2: $p_value\n\n";

}

#

#################### Utility Functions ###################

#

from perl docs:

sub fisher_yates_shuffle {

my $arr = shift;

my $i = @$arr;

while (--$i) {

my $j = int rand($i + 1);

@$arr[$i, $j] = @$arr[$j, $i];

}

}

#

Abramowitz and Stegun’s high-quality approximation to the

normal CDF:

#

sub cumulative_distribution_function {

my $x = shift;

my $PI = 3.14159265358;

my $normalized_pdf_value = exp(-($x**2)/2.0) / sqrt(2*$PI);

my $t = 1 / (1 + 0.2316419 * $x);

my $cdf = 1 - $normalized_pdf_value * (0.319381530*$t

- 0.356563782*($t**2)

+ 1.781477937*($t**3)

- 1.821255978*($t**4)

+ 1.330274429*($t**5));

return $cdf;

}

� To explain the organization of the code, shown in the upper half

of page 52 are the values for the parameters of the significance

testing demonstration here. The variable $MAX ITERATIONS is

56

Significance Testing for IR An RVL Tutorial by Avi Kak

the number of permutations from the 2N possibilities for the

assignment of LSA-1 and LSA-2 labels to the rows in Table 8

where N is the number of queries in the test queries.txt file.

We have set $MAX ITERATIONS to 100,000. The parameters

$THRESHOLD 1 and $THRESHOLD 2 are the two values for the

constructor parameter lsa svd threshold that is used to decide

how many of the largest singular values to accept for the LSA

model.

� The rest of what is in the upper half of page 52 is setting up

values for the constructor parameters for the module class

Algorithm::VSM. See the documentation that comes with the

module for an explanation of the constructor parameters.

� What you see in the bottom third of page 52 is a call to the

constructor of the Algorithm ::VSM class for the LSA-1 model.

The corresponding constructor call for LSA-2 is shown in the

middle third of page 53. What you see at the top and the bottom

of page 53 are the method invocations on the instances of

Algorith::VSM for actual construction of the corpus models.

These method invocations extract the corpus vocabulary, subject

the vocabulary to stop words and stemming, construct document

vectors, etc.

� Note that the only difference between the constructor calls on

pages 72 and 73 is the value for the parameter

57

Significance Testing for IR An RVL Tutorial by Avi Kak

lsa svd threshold. For LSA-1, we set it to $THRESHOLD 1 and

for LSA-2 to $THRESHOLD 2.

� At the bottom of page 53, you see the script calculating a value

for $OBSERVED t. This is the observed value of the test statistic.

It is this value we want to subject to significance testing. What is

stored in $OBSERVED t is the difference of the two MAP values,

the first being the MAP for LSA-1 and the second being the MAP

for LSA-2. The individual MAP values are stored in the variables

$MAP Algo 1 and $MAP Algo 2.

� The actual significance testing code begins in the middle of page

54. We first create an empty array @test statistic. This array

will hold the test statistic values for the different permutations of

the assignments of the labels LSA-1 and LSA-2 to the rows of

Table 8.

� For generating each permutation, at the bottom of page 54 we

first apply the Fisher-Yates shuffle algorithm to create a random

permutation of the sequence of integers from 1 though N − 1

where N is the number of queries for which we have collected the

average precision data. The shuffled sequence of the integers is

stored in the array variable @permuted range. Subsequently, we

scan through the entries in this array and when an entry exceeds

the mean of the integer sequence, we retain the LSA-1/LSA-2

labels for the average precision values for that query. Otherwise,

58

Significance Testing for IR An RVL Tutorial by Avi Kak

we switch the labels.

� In the upper half of page 55, we calculate the MAP values for the

sequence of precision values that carry the label LSA-1 and the

sequence with the label LSA-2.

� Note how the following statement in the middle of page 55

calculates the value of the test statistic by taking a difference of

the two MAP values for LSA-1 and LSA-2 for a given

permutation of the LSA-1/LSA-2 labels:

$test_statistic[$iter] = $MAP_1 - $MAP_2;

� Having calculated the test-statistic values for each of the

permutations, starting in the middle of page 55, I first show the

code for p-value calculation with the Randomization method and

then show the code for the same but with the Student’s Paired

t-Test.

� For the method based on randomization, as explained earlier

Section 10, we count the number of times the test-statistic value is

either less than the negative of the absolute value stored in

$OBSERVED t or larger the positive of the absolute value stored in

the same variable. When we divide it by the total number of

permutations used, we get the p-value.

59

Significance Testing for IR An RVL Tutorial by Avi Kak

� What is shown in the lower third of page 55 and the upper half of

page 56 is the calculation of the p-value using the Student’s Paired

t-Test. We will explain this in greater detail in the next section.

� The bottom half of page 56 contains two utility functions, one for

the Fisher-Yates random shuffle of an array and the other for

calculating a high-quality approximation to the normal

cumulative distribution function (CDF) that is needed for the

Student’s Paired-t Test approach to calculating the p-value.

60

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

11: Calculating the p-Values with the
Student’s Paired t-Test

� The main difference between the Randomization method and the

Student’s Paired t-Test method for p-value calculation is as

follows: Whereas in the former we make no assumptions regarding

the distribution of the test statistic, for the latter we assume the

values of the test statistics are distributed according to the

Student’s t-distribution.

� A t-distributed random variable looks like a normally distributed

random variable except for the fact that the former has heavier

tails. That makes a t-distributed random variable more likely to

capture phenomena where rare events are not as unlikely as for

the case of normally distributed random variables.

� Perhaps the easiest way to look at a t-distributed variable is as

the ratio of a normally distributed variable and a chi-square

distributed variable with ν degrees of freedom. [A chi-square

variable of ν degrees of freedom is the square-root of the squares

of ν + 1 normally distributed variables.]

� The test statistic for the Student-t test is given by the ratio of the

61

Significance Testing for IR An RVL Tutorial by Avi Kak

difference between the MAP values (this is the value of the

variable $OBSERVED t) and what is known as the “standard

error” of this difference. In our context, the standard error is

approximated by
√

σ2

N
, where N is the number of queries in the

test queries.txt file and σ2 the variance associated with the

MAP values under the null hypothesis. After you have calculated

the test statistic, you can find the p-value by looking up a table of

values from Student’s t-distribution.

� For this tutorial we will take advantage of the fact that as the

degrees of freedom increase, the t-distribution approaches the

normal distribution.

� For example, when the degrees of freedom are 30 or more, the

error in approximating the PDF (probability density function) or

the CDF (cumulative distribution function) of a t-distribution by

that for a normal distribution is less than 0.005.

� Under the assumption of normal distribution for the test statistic,

the p-value can be calculated by finding the total probability mass

of the normal distribution that is below the absolute observed

value (stored in $OBSERVED t) and that is above this value.

� However, before we can find the above-mentioned probability

mass, we must estimate the mean and the variance of the normal

62

Significance Testing for IR An RVL Tutorial by Avi Kak

distribution that describes the test statistic.

� The lower half of the code on page 55 shows us using an

incremental algorithm for estimating both the mean the variance.

� Having estimated the mean and the variance for the test statistic,

we now calculate on 56 the probability mass we mentioned above.

This is the p-value as yielded by the Student’s Paired t-Test based

method.

63

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

12: Comparison of the p-Values Obtained
with Randomization and with Student’s t-Test

� Shown in Table 9 are the p-values calculated with Randomization

and with Student-t. The corpus, the queries, and the relevance

judgments used in the results shown here can be found in the

examples directory of the Algorithm::VSM module, version 1.1

or higher. As mentioned earlier, the Student-t results are based on

a normal approximation to the t-distribution. This is likely to be

a questionable assumption for the experimental parameters used.

lsa svd threshold lsa svd threshold p-value p-value
for for with with

LSA-1 LSA-2 Randomization Student-t

0.02 0.12 0.00002 0.00044

0.02 0.10 0.00173 0.00438

0.02 0.08 0.00370 0.00154

0.02 0.06 0.00897 0.01710

0.02 0.04 0.00865 0.01984

0.02 0.03 0.07545 0.09548

0.02 0.025 1.000 1.000

Table 9: A comparison of the p-values calculated using Randomization and the Student’s t-Test.

64

Significance Testing for IR An RVL Tutorial by Avi Kak

� We will use the criterion that a p-value of less than 0.05 means

that we can reject the null hypothesis (the null hypothesis says

that LSA-1 and LSA-2 can be thought of as being the same

algorithm). So for p < 0.05, we consider the two

algorithms to be different.

� With the randomization test we must reject the null hypothesis

(implying that the two algorithms are different) when we set

LSA-2’s lsa svd threshold to 0.04 or higher. On the other

hand, we must accept the null hypothesis (implying that LSA-1

and LSA-2 can be considered to be the same algorithm) when

LSA-2’s lsa svd threshold is set to 0.03 or lower. These

conclusions apply when we keep LSA-1’s lsa svd threshold set

at 0.02.

� The conclusions we draw for the t-test are the same.

� One would think that as we increase the value of

lsa svd threshold for LSA-2 in relation to the value of the

same parameter in LSA-1, the p-values would become

monotonically smaller since the two retrieval algorithms would

become more and more different. That this is not borne out by

the results shown here might be attributable to the small number

of queries used in the experiments and to the small size of the

corpus.

65

Significance Testing for IR An RVL Tutorial by Avi Kak

� Note that in all cases, we leave unchanged the value of

lsa svd threshold for LSA-1 for the comparative study.

66

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

13: A Potential Source of Confusion
Regarding the Calculation of p-Values

� To explain the source of confusion, let’s go back to the loop shown

in the first bullet on page 51 where we count the number of times

the value of the test statistic is outside the interval

[− abs($OBSERV ED V ALUE), abs($OBSERV ED V ALUE)]

� The confusion arises from the fact that we accept the null

hypothesis (that is, we consider the two algorithms being

compared to be identical) when a large number of the test

statistic values fall outside the above range. But, it would seem

that when two algorithms being compared are identical, the value

of the test statistic would be zero and therefore, seemingly, within

the interval shown above.

� So what gives?

� Before I answer this question, consider first the case of what the

implementation shown earlier does when the two algorithms are

identical.

67

Significance Testing for IR An RVL Tutorial by Avi Kak

� The case of two algorithms being completely identical is obviously

a boundary case.

� As it turns out, the code shown earlier for the calculation of the

p-values handles this case correctly. In this case, the variable

$count in the loop on page 51 is incremented for every iteration

through the loop. Note that for $count to not get incremented,

the value of $test_statistic must be strictly within the

half-closed interval shown above. But when both the

$OBSERVED_VALUE and the value for a test statistic are zero, that

condition would NOT be satisfied.

� Let’s now relax the boundary case described above a bit and

consider the case when the two algorithms being compared are

nearly identical but not exactly so.

� Now the value of $OBSERVED_VALUE will be small but not zero.

Let’s say that now we want to test the null hypothesis that the

two algorithms can be considered to be identical from a black-box

perspective. If the two algorithms are nearly identical, then the

rationale underlying significance testing is that whereas the two

real MAP values for the two algorithms would be close, a random

assignment of algorithms to the entries in a table such as the one

shown on page 51 would yield a MAP difference that would not

be small in relation to the value of $OBSERVED VALUE.

68

Significance Testing for IR An RVL Tutorial by Avi Kak

� By the same token, if the two algorithms being compared are

significantly different, then the value of $OBSERVED_VALUE will be

relatively large. But now a random assignment of algorithms to

the entries in the table on page 51 would generally produce a

MAP difference that could be comparable to the value in

$OBSERVED_VALUE.

� Another way of saying the same thing would be that when the

two algorithms being compared are really close, their MAP

difference (which is the value stored in $OBSERVED_VALUE) would

be very small and that this difference would generally be smaller

than what you would get from a random assignment of the

algorithms to the retrieval results shown in the different rows of

the table on page 51.

69

Significance Testing for IR An RVL Tutorial by Avi Kak

Back to TOC

14: Acknowledgments

If you enjoyed this tutorial, much of the credit should go to Mark Smucker, James Allan, and Ben Carterette. They are
the authors of the wonderful paper “A Comparison of Statistical Significance Tests for Information Retrieval
Evaluation” that was presented at CIKM’07. This paper was brought to my attention by Shivani Rao. Thanks Shivani!

My conversations with Chad Aeschliman, Gaurav Srivastava, and Josiah Yoder were of much help in clarifying the
presentation of precision-recall characterization of random retrieval from a database.

During the spring of 2015, my conversations with Naveen Kulkarni of Infosys played an important role in the upgrades
I made to my Perl based VSM module described in Sections 6 and 7 of this tutorial. Naveen has packaged the VSM
module into a Windows-platform-based standalone executable that incorporates all imported modules.

With regard to the changes made in December 2015, I owe many thanks to Shayan Akbar and Tanmay Prakash for the
conversations that resulted in several improvements to my presentation of the material related to Precision-vs.-Recall
curves in Section 1 of this tutorial.

During the summer of 2023, Rohan Sarkar’s interest in using Deep Metric Learning for image retrieval led me back to
this tutorial. Rohan is currently working on his Ph.D in RVL. As a result, I decided to clean up the tutorial and make
its formatting a bit more modern.

70

	Precision and Recall for Characterizing a Retrieval Algorithm
	Precision vs. Recall for Retrieval by a Monkey
	Precision vs. Recall for Retrieval by an Oracle
	Average Precision for a Query qi
	Mean Average Precision (MAP) for a Retrieval Algorithm
	Algorithm::VSM — A Perl Module for Information Retrieval and Significance Testing
	Convenience Scripts in the examples Directory of the Module Algorithm::VSM
	Comparing Retrieval Algorithms
	The Three Ingredients of Significance Testing
	Calculating p-Values for the Randomization Based Test of the Null Hypothesis
	Calculating the p-Values with the Student's Paired t-Test
	Comparison of the p-Values Obtained with Randomization and with Student's t-Test
	A Potential Source of Confusion Regarding the Calculation of p-Values
	Acknowledgments

