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1: Monolithic vs. Cascaded Classifiers

� The traditional approach to classification, reviewed briefly in

the next section, consists of pooling all the features that you

think are relevant to the classification task at hand and using

your training data to partition the feature space into different

regions for the different classes.

� However, for object detection (which is the same thing as binary

classification), there is an alternative approach that lends itself

well to creating a classifier with a specific performance level.

[A detector can be characterized by two independent performance measures: the True-Positive

(TP) rate and the False-Positive (FP) rate. The issue here is creating a detector with a

targeted value for either TP or FP. For example, for detecting faces in images, you would want

to design a detector with an FP that is no more than 10−6.]

� The alternative approach mentioned above involves cascaded

classification in which each classifier directs its firepower at the

data misclassified by the previous classifier. Assuming you have

training data that is large enough and rich enough in terms of

the number of features you can extract from it, you keep on

adding classification stages to the cascade until you have

achieved the desired performance level.
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� Achieving a targeted performance level with cascaded design is

aided by the fact that for x in the interval (0, 1) a power like xn

decreases with n much more slowly when x is close to 1

compared to the case when x is closer to 0. For example, for

x = 0.99, x10 ≈ 0.9. On the other hand, for x = 0.3,

x10 ≈ 10−6.

� Let’s apply the above observation to a cascaded classification

system in which each stage has a TP rate of 0.99 and an FP

rate of 0.3. Assuming that we have 10 stages in the cascade and

assuming that the cascade design is such that the overall TP

and FP rates are products of the individual stage rates, the

entire system will operate with a targeted FP of 10−6 while the

overall TP rate would be a not unimpressive 0.9.

� The argument made above depends on being able to design a

classification stage that would operate with a TP of 0.99 and

FP of 0.3. Here is a fact that is highly relevant to this question:

For any binary classifier, you can set its TP to as high a value

as you want simply by changing the decision threshold that

declares the blob of pixels as being the target — but, as you

would expect, that would be at the cost of increasing the FP

rate.

� What the above observation points to is the fact that while TP

and FP are independent characterizations of a detector,
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nevertheless, for a specific detector, they are coupled in that if

you increase the TP by simply changing the decision threshold

that accepts a blob of pixels as the object, you will

concomitantly increase the FP. This intimate relationship

between TP and FP defines what is the known as the ROC

curve for a detector. ROC stands for “Receiver Operating

Characteristic”. Here is a wonderful Wikipedia page that

summarizes various aspects of the ROC curve:

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

� In the sections that follow, I’m going to present the AdaBoost

algorithm by Freund and Schapire for designing a cascaded

classifier with a targeted performance level. But first let me

review the traditional approach to classifier design in the next

section.
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2: The Conventional Wisdom

� Revisiting the conventional wisdom, if you want to predict the

class label for a new data element, you undertake the steps

described below:

� You first get hold of as much training data as you can.

� You come up with a decent number of features. You try to

select each feature so that it can discriminate well between the

classes. You believe that the greater the power of a feature to

discriminate between the classes at hand, the better your

classifier.

� If you have too many features and you are not sure which ones

might work the best, you carry out a feature selection step

through either PCA (Principal Components Analysis), LDA

(Linear Discriminant Analysis), a combination of PCA and

LDA, or a greedy algorithm like the one that starts by choosing

the most class-discriminatory feature and then adds additional

features, one feature at a time, on the basis of the class

discriminations achieved by the features chosen so far, etc. [See

my “Constructing Optimal Subspaces Tutorial” for further information regarding this
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issue.]

� Once you have specified your feature space, you can use one of

several approaches for predicting the class label for a new data

element:

� If your feature space is sparsely populated with the training

samples and you have multiple classes to deal with, you are not

likely to do much better than a Nearest Neighbor (NN)

classifier.

� For NN based classification, you calculate the distance from

your new data element to each of the training samples and you

give the new data point the class label that corresponds to the

nearest training sample. [As a variation on this, you find the k

nearest training-data neighbors for your new data element and the class

label you give your new data element is a majority vote (or a weighted

majority vote) from those k training samples. This is known as the

k-NN algorithm. In such algorithms, the distance calculations can be

speeded up by using a k-d tree to represent the training samples.]

� For another variation on the NN idea, you might get better

results by using NN to the class means as calculated from the

training data as opposed to the training samples directly.
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� If you don’t want to use NN and if you are trying to solve a

binary classification problem for the case of two linearly

separable classes, you could try using linear SVM (Support

Vector Machine) for your classifier. This will give you a

maximum-margin decision boundary between the two classes.

Or, if your classes are not linearly separable, you could

construct a nonlinear SVM that uses a “kernel trick” to project

the training data into a higher-dimensional space where they

become linearly separable.

� If you have multiple classes and you are comfortable using

parametric models for the class distributions, you should be

able to use model-based similarity criterion to predict the class

label for your new data element. If you can fit Gaussians to

your training data, you could, for example, calculate

Mahalanobis distance between your data element and the

means for each of the Gaussians to figure out as to which

Gaussian provides the best class label for the new data element.

� Regardless of how you carry out classification, all the

approaches listed above have one thing in common: The better

the features are at discriminating between the classes, the better

the performance of the classification algorithm.
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3: Introduction to AdaBoost

� AdaBoost stands for Adaptive Boosting. [Literally, boosting here

means to arrange a set of weak classifiers in a sequence in which each

weak classifier is the best choice for a classifier at that point for

rectifying the errors made by the previous classifier.]

� In the sequence of weak classifiers used, each classifier focuses

its discriminatory firepower at the training samples

misclassified by the previous weak classifier. You could say

that by just focusing on the training data samples misclassified

by the previous weak classifier, each weak classifier contributes

its bit — the best it can — to improving the overall

classification rate.

� The AdaBoost approach comes with a theoretical guarantee

that as you bring in more and more weak classifiers, your final

misclassification rate for the training data can be made

arbitrarily small.

� The AdaBoost approach also comes with a bound on the

generalization error. This classification error is based on the

testing data that was NOT used for training, but that is
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assumed to be derived from the same data source as the

training data.

� The main reference for the AdaBoost algorithm is the original

paper by Freund and Schapire: “A Decision-Theoretic

Generalization of On-Line Learning and an Application to

Boosting,” Proc. of the 2nd European Conf. on Computational

Learning Theory, 1995.

� AdaBoost has become even more famous after it was shown by

Viola and Jones how the algorithm could be used to create face

detectors with false positive rates as low as 10−6.

� Any algorithm that detects a face by scanning an image with a

moving window (of different sizes to account for the fact that

the size of a blob that is a face is not known in advance) and

applying a classification rule to the pixels in the window must

possess an extremely low false-positive rate for the detector to

be effective. False positive here means declaring a blob of

non-face pixels as a face.
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4: The Notation

� We represent our labeled training data by the set

{(x1, y1), (x2, y2), . . . , (xm, ym)} (1)

with xi ∈ X and yi ∈ {−1, 1}. The set X represents our

training data and the set {−1, 1} the two class labels for the

data elements. Note that each training data sample xi can be a

point in a multidimensional feature space. Obviously, m is the

total number of training samples.

� The good thing is that we can be relaxed about the design of

the feature space in which the training samples xi ∈ X reside.

As long as a feature is relevant to the classification problem at

hand, it should work as a dimension of the feature space.

� For the purpose of drawing samples for training a classifier,

AdaBoost maintains a probability distribution over all the

training samples. This distribution is modified iteratively with

each application of a new weak classifier to the data. We’ll

denote this probability distribution by Dt(xi). The subscript t

refers to the different iterations of the AdaBoost algorithm.
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� Initially, the probability distribution is uniform over the training

samples. That is, D0(xi) is considered to be uniform over xi.

� The weak classifier chosen at iteration t of the AdaBoost

algorithm will be denoted ht. And the class label predicted by

this weak classifier for the training data element xi denoted

ht(xi). By comparing ht(xi) with yi for i = 1, 2, . . . ,m, we can

assess the classification error rate for the classifier ht.

� We use ǫt to denote the misclassification rate for the weak

classifier ht. [For a conceptual description of how you would use ǫt at

each iteration: At iteration t, each candidate weak classifier would be

trained using a set of samples drawn from the training data taking into the

probability distribution Dt(x). The higher the probability Dt(x) for a given

training sample x, the greater the chance that it would be chosen for

training the candidate classifier h(t). An important issue related to the

selection of ht: From all the different possibilities for ht, we would choose

the one that minimizes the misclassification rate ǫt, as measured over all of

the training data, using a formula shown in the next section.]

� However, in most practical implementation of AdaBoost, a weak

classifier consists of just a single feature that is thresholded

appropriately. [Consider a computer vision application of AdaBoost and let’s say

you have a total of F = {f1, f2, ..., f|F |} features for characterizing a blob of pixels. At each

iteration t, for the weak classifier ht, you find the feature ft that results in the smallest

ǫt. This is best done by constructing an ordered list of all the training samples with
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respect to each candidate ft. For any given ft, you step through all its discrete values,

from the lowest to the highest, and, considering each such value as a possible decision

threshold θ, you update two quantities error rate type 1 and error rate type 2. The first,

error rate type 1, measures the misclassification rate if you classify all training samples

that lie above θ as being of class +1 and all training sample that lie below θ as being of

class −1. The second, error rate type 2, measures the misclassification rate when you

reverse the sense in which you use the decision threshold. That is, for error rate type 2,

you measure the misclassification rate when all training samples above θ are labeled −1

and all those below as +1. Finally, for a given ft, you choose the threshold θ which

corresponds to the smallest of the error rate type 1 and error rate type 2 values. If

error rate type 1 yielded the best value θt for θ, you say you will consider ft with positive

polarity and decision threshold θt as a candidate for the weak classifier ht. On the other

hand, if error rate type 2 yielded the best θt, you change the polarity to negative. This

logic when considered over all possible features in F returns the triple (ft, pt, θt), where

pt represents the polarity, as the best weak classifier at iteration t. When stepping

through the discrete values for a given feature ft, there is a little bit more to the

calculation of error rate type 1 and error rate type 2 than just updating the two types of

counts of the misclassified training samples: the contribution made by each training

sample to these two error rates must be weighted by the probability Dt(x) associated

with that sample. This fact will become clearer in the next section. When single features are used

as weak classifiers, they are sometimes referred to as decision stumps. Note that factoring Dt(x)

into the calculation of the two types of misclassification rates is how sample probabilities Dt(x) affect

the design of ht for creating decision stumps. That is, for the case of decision stumps, instead of

using Dt(x) for drawing the training samples for the next iteration t+ 1, you use Dt(x) to weight a

sample x’s contribution to the misclassification error as explained above.]

� To repeat an important point made above: If you are using
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decision stumps (that is, single feature classifiers) in the manner

described above for selecting the best classifier ht at iteration t,

if a training sample x is misclassified by the classifier under

consideration using threshold θt at a given polarity, instead of

incrementing by 1 the total number of training samples

misclassified so far, you add to the previously accumulated value

for the total misclassification rate the value of Dt(x) for that

sample x.

� Another thing I mentioned in the blue-red note on the

previous page: the best single-feature classifier ht chosen at

iteration t can be expressed as (ft, pt, θt) where ft is the feature

chosen, pt its polarity, and θt the decision threshold.

� We use αt to denote how much trust we can place in the weak

classifier ht. Obviously, the larger the value of ǫt for a classifier,

the lower our trust must be. We use the following relationship

between αt and ǫt:

αt =
1

2
ln

1− ǫt

ǫt
(2)

� As ǫt varies from 1 to 0, αt will vary from −∞ to +∞. ǫt being

close 1 means that the weak classifier fails almost completely on

the overall training dataset. And ǫt being close to 0 means that

your weak classifier is actually a powerful classifier. (A weak
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classifier whose ǫt is close to 0 would negate all the reasons for

using AdaBoost.)

� We will use H to denote the final classifier. This classifier

carries out a weighted aggregation of the classifications

produced by the individual weak classifiers to predict the class

label for a new data sample. The weighting used for each weak

classifier will be proportional to the degree of trust we can place

in that classifier. [Weighting the individual weak classifiers ht with the

trust factor αt makes it possible for a single strong weak classifier to

dominate over several not-so-strong weak classifiers.]
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5: The AdaBoost Algorithm

� Let’s say we can conjure up T weak classifiers. These classifiers

can be as simple as what you get when you subject each feature

of a multi-dimensional feature space to a suitable threshold.

[For illustration, let’s say you are using the value of “yellow-ness” to weakly classify

fruit in a supermarket. Such a weak classifier could work as follows: if the value of

yellow color is below a decision threshold dth, you predict the fruit’s label to be apple,

otherwise you predict it to be an orange. As long as such a weak classifier does better

than a monkey (meaning that as along as its classification error rate is less than 50%,

it’s a good enough weak classifier. (Should it happen that this decision rule gives an

error rate exceeding 50%, you can flip its “polarity” to yield a classification rule with an

error rate of less than 50%.]

� What the above note in blue implies is that any feature, if at all

it is relevant to the objects of interest, can be used as a weak

classifier.

� Let’s say we wish to use N iterations of the logic described

below for constructing an AdaBoost classifier. The goal of each

iteration would be to choose the best weak classifier at that

iteration for remediating the classification errors made by the

previously chosen weak classifier. [In practice, the number of iterations, N , is

NOT fixed. You iterate as many times as necessary in order to meet a classification
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performance target. For example, for face detection, you will have a target value for the

false-positive rate FP for a given value of TP . You will keep on iterating until you have

reached that target — assuming you have a large enough set of weak classifiers available.]

� As for the AdaBoost algorithm, for the iteration index

t = 1, 2, . . . , N , we do the following:

1. Using the training samples thrown up by the probability

distribution Dt(xi), we select a weak classifier, denoted ht,

that does the best possible job of classifying the data being

used specifically for the training of h(t). As you will see, Dt

is such that ht specifically targets the training samples

misclassified by the previous weak classifier.

2. We apply ht to all of our training data (even though the

classifier was constructed using just those training samples

that were thrown up by the probability distribution Dt).

The classifier ht represents a mapping ht : X → {−1, 1}.

3. Using all of the training data, we then estimate the

misclassification rate Prob{ht(xi) 6= yi} for the ht classifier:

ǫt =
1

2

m
∑

i=1

Dt(xi) ·
∣

∣ht(xi)− yi
∣

∣ (3)

Note how the misclassifications are weighted by the

probabilities associated with the samples. Now read again

the long comment on pages 12 and 13 in the bullet that

begins with “However, in most practical implementation

17
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of AdaBoost....”. [As stated on pages 12 and 13, if you are using single

features as weak classifiers (which is normally the case in computer vision

applications of AdaBoost), you are likely to use the formula shown above for

factoring in the effect of the probability distribution Dt, as opposed to using this

distribution for directly sampling the training dataset as stated in Step 1 on the

previous page.]

4. Next, we calculate the trust factor for ht by

αt =
1

2
ln

(

1− ǫt

ǫt

)

(4)

5. Finally, we update the probability distribution over the

training data for the next iteration:

Dt+1(xi) =
Dt(xi)e

−αtyiht(xi)

Zt

(5)

where the role of Zt is to serve as a normalizer. That is, we

set a value for Zt so that
∑m

i=1Dt+1(xi) = 1, where m is

the total number of training samples. This implies

Zt =
m
∑

i=1

Dt(xi)e
−αtht(xi)yi (6)

Note the highly intuitive manner in which Dt+1(xi) acquires

smaller probabilities at those samples that were correctly

classified by ht. The product yiht(xi) will always be positive

for such samples.

6. We then go back to Step 1 for the next iteration.
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� At the end of N iterations, we construct the final classifier H as

follows:

H(x) = sign

(

N
∑

t=1

αtht(x)

)

(7)

where x is the new data element whose class label we wish to

predict on the strength of the information in the training data.

If for a test data sample x, H(x) turns out to be positive, the

predicted class label for x is 1. Otherwise, it is -1. [The above

formula for the final classifier makes sense only if you use 1 and -1 as class

labels. Note, however, it is not uncommon for an AdaBoost

implementation to use 1 and 0 as the two class labels, with 1 for the object

you are looking for in an image and 0 for the background. When using 1

and 0 for class labels, the formula for H(x) is likely to compare the

summation
∑

N

t=1
αtht(x) against 1

2

∑

N

t=1
αt. Using 1 and 0 for the class labels

makes it easier to trade off the true-positive rate for the false-positive rate

for final classification — an important issue in designing object detectors

in computer vision applications of AdaBoost. For such tradeoffs, you are

likely to compare
∑

N

t=1
αtht(x) with a decision threshold whose value would

depend on what your desired true-positive rate is for the final classifier.

For such logic to make sense, you’d keep on adding weak classifiers until

the false-positive rate falls below a user-specified threshold.]

� Schapire and Singer have shown that the training error of the

final classifier is bounded by

1

m

∣

∣

∣

∣

∣

{

i : H(xi) 6= yi

}

∣

∣

∣

∣

∣

≤

T
∏

t=1

Zt (8)
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where Zt is as shown at the top on page 15.

� The bound shown above implies that for any value of N , which

is the number of weak classifiers used, you want to use those

that yield the smallest values for {Zt|t = 1 . . . N}. Generalizing

this argument to treating N on a running basis, from amongst

all the weak classifiers at your disposal, you want to pick that

classifier for each iteration t that has the least misclassification

rate.

� If you examine the formula for Zt on page 18, the smaller the

misclassification rate for a given weak classifier, the smaller the

associated Zt. Now you can see why in the comment block on

pages 12 and 13, at each iteration t, we wanted a feature for ht

that minimized ǫt as measured over all of the training data.
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6: An Example for Illustrating AdaBoost

� I will use the two-class example shown below to illustrate

AdaBoost.

� The points depicted as small circles were generated by the

Python script shown below. I will refer to these points as just

“circles”:

def gen_points_displayed_as_circles():

points_circles = []

for i in range(N1):

x,y = 1,1

while x**2 + y**2 >= 1:

x = random.uniform(0,1)
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y = random.uniform(0,1)

x,y = 0.4*(x-0.6), 0.4*(y-0.3)

points_circles.append(["circle_" + str(i), x+0.6,y+0.3])

return points_circles

where the global variable N1 specifies the number of points you

want in a circle of radius ≈ 0.4 centered at (0.6,0.3).

� The points depicted as small squares in the figure were

generated by the following script. The global variable N2

specifies the number of such points desired.

def gen_points_displayed_as_squares():

points_squares = []

for i in range(N2):

x,y = 0.6,0.3

while (x-0.6)**2 + (y-0.3)**2 < 0.2**2:

x = random.uniform(0,1)

y = random.uniform(0,1)

points_squares.append(["square_" + str(i), x, y])

return points_squares

� Note that I make no attempt to generate the training data

points according to any particular statistical distribution in the

respective domains. For example, the circle points are NOT

uniformly distributed (despite the impression that may be

created by calls to random.uniform()) in the area where they

predominate. Along the same lines, the square points are NOT

uniformly distributed in the rest of the [0, 1]× [0, 1] box. How

the circle and the square points are statistically distributed is

NOT important to my illustration of AdaBoost.

22



AdaBoost Tutorial by Avi Kak

� We can use any of a number of approaches for solving the

classification problem depicted in the figure on page 21. For

example, it would be trivial to construct an SVM classifier for

this case. Simpler still, an NN classifier would in all likelihood

work just as well (although it would be a bit slower for obvious

reasons).

� The next section demonstrates how we can use AdaBoost to

solve this problem.
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7: Weak Classifiers in Our Example Study

� A weak classifier for our example will be a linear decision line as

shown in the figure below. Such a classifier will declare all of the

data points on one side of the line as being “circles” and the

data points on the other side as being “squares”.

L

P

θ

d th

Decisio
n Line

Class "circles"

Class "squares"

(0,0) (1,0)

(1,1)(0,1)

� This sort of a classifier is characterized by the triple (θ, dth, p),

where θ is the orientation of the decision line L, and dth the

threshold on the projections of the data points on the
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perpendicular P to L (with the stipulation that the

perpendicular pass through the origin). We say that the

polarity p of the classifier is 1 if it classifies all of the data points

whose projections are less than or equal to dth as being “circle”

and all the data points whose projections are greater than dth
as being “square”. For the opposite case, we consider the

classifier’s polarity to be -1.

� Although, for a given orientation θ, the decision line L

constitutes a weak classifier for almost every value of dth (as

long we choose a polarity that yields a classification error rate of

less than 0.5), that will NOT be our approach to the

construction of a set of weak classifiers.

� For the discussion that follows, for each orientation θ, we will

choose that decision line L as our weak classifier which yields

the smallest classification error.

� In our demonstration of AdaBoost, each iteration of the

algorithm randomly chooses a value for the orientation θ of the

decision line L. Subsequently we step along the perpendicular

P to L to find the best value for the threshold dth and the best

polarity for the classifier. Best means yielding the least

classification error.
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� The script that is shown on page 28 demonstrates how we

search for the best weak classifier for a given orientation θ for

the decision line. In lines 3 and 4, the script first constructs a

unit vector along the perpendicular P to the decision line L.

� At this point, it’s good to recall that, in general, only a portion

of the training data is used for the training of each weak

classifier. See pages 12 and 13.

� The training data for the current weak classifier is sorted in lines

6 through 9 in the ascending order of the data projections on P .

� Subsequently, in lines 13 through 21, the script steps through

these projection points on P , from the smallest value to the

largest, and at, each projection point on the perpendicular P , it

calculates two types of classification errors that are described

next. Let the projection point under consideration be denoted s.

� The first type of classification error corresponds to the case

when the predicted labels for all the data points whose

projections are less than or equal to s are considered to be

”circle” and all the data points whose projections are greater

than s as being ”square”.

� The second type of the classification error corresponds to the
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opposite case. That is, when all the data points whose

projections are less than or equal to s are labeled “square”, and

all the data points whose projections are greater than s are

labeled “circle”.

� In the script, these two types of errors are stored in the hashes

type_1_errors and type_2_errors.

� The polarity of the weak classifier chosen for a given θ is

determined by which of the two minimum values for the two

types of errors is the least. And dth is the corresponding

threshold.

� The minimum values found in lines 22 and 23 are used to

determine which type of error is the least. The type that yields

the smallest value determines the polarity of the weak classifier,

as set in line 24.

� Subsequently, in line (26), we find the decision threshold dth
that corresponds to the best weak classifier for the decision line

orientation used.
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def find_best_weak_linear_classifier_at_given_orientation(orientation, training_samples): ## (1)

polarity = None ## (2)

orient_in_rad = orientation * math.pi / 180.0 ## (3)

projection_vec = -1.0 * math.sin(orient_in_rad), math.cos(orient_in_rad) ## (4)

projections = {} ## (5)

for label in training_samples: ## (6)

projection = ALL_SAMPLE_LABELS_WITH_DATA[label][0] * projection_vec[0] + \

ALL_SAMPLE_LABELS_WITH_DATA[label][1] * projection_vec[1] ## (7)

projections[label] = projection ## (8)

sorted_projections = sorted(projections, key=lambda x: projections[x]) ## (9)

type_1_errors, type_2_errors = {},{} ## (10)

how_many_circle_labels = 0 ## (11)

how_many_square_labels = 0 ## (12)

for i in range(len(sorted_projections)): ## (13)

if "circle" in sorted_projections[i]: ## (14)

how_many_circle_labels += 1 ## (15)

if "square" in sorted_projections[i]: ## (16)

how_many_square_labels += 1 ## (17)

error1 = (N1 - how_many_circle_labels + how_many_square_labels) / (1.0 * (N1 + N2)) ## (18)

type_1_errors[sorted_projections[i]] = error1 ## (19)

error2 = (how_many_circle_labels + N2 - how_many_square_labels) / (1.0 * (N1 + N2)); ## (20)

type_2_errors[sorted_projections[i]] = error2 ## (21)

least_type_1_error = min(type_1_errors.values()) ## (22)

least_type_2_error = min(type_2_errors.values()) ## (23)

polarity = 1 if least_type_1_error <= least_type_2_error else -1 ## (24)

error_for_polarity = least_type_1_error if least_type_1_error <= least_type_2_error \

else least_type_2_error ## (25)

thresholding_label = list(type_1_errors.keys())[ list(type_1_errors.values()).index( \

least_type_1_error)] if least_type_1_error <= least_type_2_error else \

list(type_2_errors.keys())[ list(type_2_errors.values()).index(least_type_2_error)] ## (26)

return [orientation, projections[thresholding_label], polarity, error_for_polarity] ## (27)

� The next section presents the calling function for the function

shown above. That calling function constitutes an

implementation of the Steps 1 through 6 of Section 5.
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8: An Implementation of the AdaBoost
Algorithm

� I next present a Python implementation of the Steps 1 through

6 of the AdaBoost algorithm as shown in Section 5.

� The script presented on page 30 starts out in lines 10 through

15 by selecting a subset of the training data on the basis of the

current probability distribution over the data. The criterion

used for choosing the training samples is very simple: We sort

all the training samples in a descending order according to their

probability values. We pick the top-ranked training samples by

stepping through the sorted list until the accumulated

probability mass is 0.5.

� A more sophisticated approach to the selection of training

samples according to a given probability distribution over the

data would consist of using an MCMC (Markov-Chain

Monte-Carlo) sampler. [See Section 3.4 of my tutorial “Monte Carlo

Integration in Bayesian Estimation” for an introduction to MCMC

sampling.]

� For a Perl based implementation of MCMC sampling with the

Metropolis-Hastings algorithm, see my “Random Point
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Generator” module available at the following clickable link:

http://search.cpan.org/ avikak/Algorithm-RandomPointGenerator-1.01/lib/Algorithm/RandomPointGenerator.pm

You can also access this module by Googling with a query

string like “avi kak cpan random point generator”.

� If you do not want to go the MCMC sampling route, but you

would like to be a bit more sophisticated than the approach

outlined in red in the second bullet on page 26, you could try

the following method: You first create a fine grid in the [0, 1]× [0, 1] box, with

its resolution set to the smallest of the intervals between the adjacent point

coordinates along x and y. You would then allocate to each training sample a number

of cells proportional to its probability. Subsequently, you would fire up a

random-number generator for the two values needed for x and y. The two such

random values obtained would determine the choice of the training sample for each

such two calls to the random number generator.

� Going back to explaining the code on page 30, in lines 16 and

17, the script fires up the random number generator for an

orientation for the weak classifier for the current iteration of the

AdaBoost algorithm. It makes sure that the orientation selected

is different from those used previously.

� The decision line orientation selected is stored in the global

array ORIENTATIONS_USED.
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� The decision-line orientation chosen and the training samples

selected are shipped off in line 19 to the function

find_best_weak_linear_classifier_ at_given_orientation() that was

presented in the previous section.

� Next, in lines 23 through 29, the script applies the weak

classifier returned by the call shown in the previous bullet to all

of the training data in order to assess its classification error

rate. This corresponds to Step 3 Section 5. This part of the

code makes a call to the subroutine weak_classify() that is

presented in the next section.

� Calculation of the classification error rate is followed in lines 31

through 35 by a calculation of the trust factor α for the weak

classifier in the current iteration of the AdaBoost algorithm.

� Subsequently, in lines 36 through 43, we update the probability

distribution over all the training samples according to Step 5 in

Section 5.
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def adaboost(outputstream): ## (1)

weak_classifiers = [] ## (2)

decision_line_orientation = int(90 * random.uniform(0.1,0.9)) ## (3)

for t in range(NUMBER_OF_WEAK_CLASSIFIERS): ## (4)

samples_to_be_used_for_training = [] ## (5)

if outputstream is not None: ## (6)

outputstream.write("\nIteration %d -- \

Printing probability distribution over the samples\n" % t) ## (7)

for (k,v) in PROBABILITY_OVER_SAMPLES.items(): ## (8)

print("%s => %s" % (str(k), str(v))) ## (9)

# Select training samples for the current weak classifier:

probability_mass_selected_samples = 0 ## (10)

for label in sorted(PROBABILITY_OVER_SAMPLES, \

key=lambda x: PROBABILITY_OVER_SAMPLES[x], reverse=True): ## (11)

probability_mass_selected_samples += PROBABILITY_OVER_SAMPLES[label] ## (12)

if probability_mass_selected_samples > 0.5: ## (13)

break ## (14)

samples_to_be_used_for_training.append(label) ## (15)

while decision_line_orientation in ORIENTATIONS_USED: ## (16)

decision_line_orientation = int(90 * random.uniform(0.1, 0.9)) ## (17)

ORIENTATIONS_USED.append(decision_line_orientation) ## (18)

learned_weak_classifier = find_best_weak_linear_classifier_at_given_orientation(

decision_line_orientation, samples_to_be_used_for_training) ## (19)

LEARNED_WEAK_CLASSIFIERS[t] = learned_weak_classifier

orientation, threshold, polarity, error_over_training_samples = learned_weak_classifier ## (20)

THRESHOLDS_USED.append(threshold) ## (21)

POLARITIES_USED.append(polarity) ## (22)

# Now find the overall classification error (meaning error for all data

# points) for this weak classifier. That will allows us to calculate how

# much confidence we can place in this weak classifier.

error = 0; ## (23)

for label in ALL_SAMPLE_LABELS: ## (24)

actual_label = label[:label.index(’_’)] ## (25)

data_point = ALL_SAMPLE_LABELS_WITH_DATA[label] ## (26)

predicted_label = weak_classify(data_point, orientation, threshold, polarity) ## (27)

if actual_label != predicted_label: ## (28)

error += PROBABILITY_OVER_SAMPLES[label] ## (29)

WEAK_CLASSIFIER_ERROR_RATES.append(error) ## (30)

if error > 0.00001: ## (31)

ALL_ALPHAS[t] = 0.5 * math.log((1 - error) / error) ## (32)

else: ## (33)

ALL_ALPHAS[t] = 5.0 ## (35)

new_PROBABILITY_OVER_SAMPLES = {} ## (36)

for label in PROBABILITY_OVER_SAMPLES: ## (37)

actual_label = label[:label.index(’_’)] ## (38)

data_point_for_label = ALL_SAMPLE_LABELS_WITH_DATA[label] ## (39)

predicted_label =weak_classify(data_point_for_label,orientation,threshold, polarity) ## (40)

exponent_for_prob_mod = -1.0 if actual_label == predicted_label else 1 ## (41)

new_PROBABILITY_OVER_SAMPLES[label] = PROBABILITY_OVER_SAMPLES[label] * \

math.exp(exponent_for_prob_mod * ALL_ALPHAS[t]) ## (42)

all_new_probabilities = new_PROBABILITY_OVER_SAMPLES.values() ## (43)

normalization = sum(all_new_probabilities) ## (44)

for label in new_PROBABILITY_OVER_SAMPLES: ## (45)

PROBABILITY_OVER_SAMPLES[label] =new_PROBABILITY_OVER_SAMPLES[label] / normalization ## (46)
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9: Some Support Routines

� Lines 27 and 40 of the script shown in the previous section

make calls to the subroutine weak_classify() shown below:

def weak_classify(data_point, decision_line_orientation, decision_threshold, polarity): ## (1)

assert polarity in [-1, 1], "you have a wrong value for polarity" ## (2)

orient_in_rad = decision_line_orientation * math.pi / 180.0 ## (3)

# The following defines the pass-through-origin perp to the decision line:

projection_vec = -1.0 * math.sin(orient_in_rad), math.cos(orient_in_rad) ## (4)

projection = data_point[0] * projection_vec[0] + data_point[1] * projection_vec[1] ## (5)

if polarity == 1: ## (6)

return "circle" if projection <= decision_threshold else "square" ## (7)

if polarity == -1: ## (8)

return "square" if projection <= decision_threshold else "circle" ## (9)

� The function shown above takes the following four arguments:

The first argument, data_point, is for the (x, y) coordinates of

the point that needs to be classified. The second,

decision_line_orientation, is for the orientation of the decision

line for the weak classifier. The third, decision_threshold, is for

supplying to the subroutine the value for dth. And the last,

polarity, is for the polarity of the weak classifier. The logic of

how the weak classifier works should be obvious from the code

in lines 4 and 5. We first construct a unit vector along the

perpendicular to the decision line in line 4. This is followed by

projecting the training data points on the unit vector.

� Next let’s consider the implementation of the final classifier
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H(x) described Section 5. The function final_classify() does

this job and is presented on the next page.

� In the loop that starts in line 6 of the code shown on page 33,

we first extract one weak classifier at a time from all the weak

classifiers stored in the dictionary LEARNED_WEAK_CLASSIFIERS.

We next call on the weak_classify() presented at the beginning

of this section to classify our new data point.

� Subsequently, in line 10, we format the numbers associated with

the weak classifiers in order to produce an output that is easy to

read and that allows for the different weak classifier

performances to be compared easily. This formatting allows for

the sort of a printout shown on page 38.

� We aggregate the individual weak classification results in lines

14 through 20 according to the formula shown for H(x) in

Section 5.
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def final_classify(data_point, outputstream): ## (1)

classification_results = [] ## (2)

if outputstream == None: ## (3)

outputstream = sys.stdout ## (4)

outputstream.write( "\n" ) ## (5)

for t in range(NUMBER_OF_WEAK_CLASSIFIERS): ## (6)

orientation, threshold, polarity, error = LEARNED_WEAK_CLASSIFIERS[t] ## (7)

result = weak_classify(data_point, orientation, threshold, polarity) ## (8)

error_rate = WEAK_CLASSIFIER_ERROR_RATES[t] ## (9)

outputstream.write("Weak classifier %d (orientation: %.3f threshold: %.3f \

polarity: %d error_rate: %.3f): %s\n" % (t, orientation, threshold,\

polarity, error_rate, result)) ## (10)

classification_results.append(result) ## (11)

outputstream.write("\nCLASSIFICATIONS: @classification_results %s\n" % \

str(classification_results) ) ## (12)

outputstream.write("\n\nTrust factors for weak classifiers: %s\n" % str(ALL_ALPHAS)) ## (13)

aggregate = 0.0 ## (14)

for i in range(len(classification_results)): ## (15)

if classification_results[i] == ’circle’: ## (16)

multiplier = 1 ## (17)

if classification_results[i] == ’square’: ## (18)

multiplier = -1 ## (19)

aggregate += multiplier * ALL_ALPHAS[i] ## (20)

return "circle" if aggregate >= 0 else "square" ## (21)
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10: Running the Demonstration Code in an
Interactive Session

� All of the code shown so far is in the script file AdaBoost.py

that you will find in the gzipped tar archive available from the

URL:
https://engineering.purdue.edu/kak/distAdaBoost/AdaBoostScripts.tar.gz

[If clicking on this link does not directly download the archive into your own computer, you may have

to copy and paste the link in your browser for download.]

� After you have unzipped and untarred the archive, executing

the Python script AdaBoost.py will place you in an interactive

session in which you will be asked to enter the (x, y)

coordinates of a point to classify in the [0, 1]× [0, 1] box. The

script will then provide you with the “circle” versus “square”

classification for the point you entered. Before going into the

details of this interactive session, let’s first see what all is done

by the AdaBoost.py script.

� The script AdaBoost.py needs values for the following three

user-defined global variables. The values currently set are shown

below. But, obviously, you can change them as you wish.

# USER SPECIFIED GLOBAL VARIABLES:

N1 = 100 # the "circle" points on page 19
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N2 = 100 # the "square" points on page 19

NUMBER_OF_WEAK_CLASSIFIERS = 40

� With regard to what it accomplishes, the AdaBoost.py script

first calls the two functions shown on pages 21 and 22 for

generating the number of points specified through the global

variables N1 and N2.

� Subsequently, it initializes the probability distribution over the

training samples, as mentioned in Section 4.

� Finally, AdaBoost.py calls the following subroutines:

display_points_in_each_class(class_1, class_2, outputstream)

visualize_data(class_1, class_2)

adaboost(outputstream)

visualize_all_orientations_used()

interactive_demo()

where the first two calls are for the visualization of the training

data. The call to adaboost() accomplishes what was explained

in Section 8 of this tutorial. The last call above,

interactive demo() places the script in an interactive mode in

which the user is prompted for the points (x, y) to classify and

the script returns the final classifications for the points, while

also displaying the results produced by each weak classifier.

� Note the argument outputstream in the calls to
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display_points_in_each_class() and adaboost(). The role

played by this argument is explained in what follows.

� The value of the variable outputstream is set at the very

beginning when you fire up the script AdaBoost.py depending on

how you respond to the two prompts generated by the script.

These prompts ask you whether you want the information

related to the construction of the weak classifiers to be dumped

in a file or to be displayed in your terminal window.

� When you are first becoming familiar with this Python code, I

recommend that you answer ’no’ to the two prompts. With that

answer, no information related to the weak classifiers will be put

out.

� Shown in the figure that follows are the decision lines chosen

randomly by the AdaBoost.py script with the global parameters

set as N1 = 100, N2 = 100, and

NUMBER OF WEAK CLASSIFIERS = 40. The origin for the (x, y)

coordinates in the visualization is at the bottom-left corner.

The perpendicular distance from the origin to each decision line

is the decision threshold for that line. When the value of

polarity associated with a decision line is +1, all data points

above the line are declared to be squares and all those below as

circles. As you would expect, a polarity of -1, has the opposite

meaning. I have not shown the polarity associated with each

of the decision lines in the figure. However, if you run the
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demo code yourself, you will see the polarities printed out.

� The depictions of the weak-classifier decision lines shown

above may appear counter-intuitive to you. Most people

would expect the decision lines shown to circumscribe the

embedded class represented by the circles (as would be the

case for, say, a nonlinear SVM). To see why the decision lines

make sense in the context of AdaBoost logic, you will need to

recall how the lines relate to one another. The first decision line

(you’ll need to see the information that is printed out when you

run the demo to see which line is the first line) will obviously

misclassify many training samples. Following AdaBoost logic,

the second decision line will then work primarily on what was

misclassified by the first decision line with its own threshold and

polarity. And so on with the decision lines that follow. So
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unlike what happens in a nonlinear SVM, it is not as if the

decision lines are trying to separate the enclosed class from

the enclosing class from different directions.

� What follows is the code for interactive_demo():

def interactive_demo(): ## (1)

print("\n\nThis AdaBoost demonstration is based on the following randomly selected

decision line orientations for the weak classifiers: %s\n\n" % str(ORIENTATIONS_USED)) ## (2)

print("\n\nThe lines shown pass through the decision thresholds: %s\n\n" %

str(THRESHOLDS_USED)) ## (3)

print("\n\nThe polarities used with the decision thresholds: %s\n\n" % str(POLARITIES_USED)) ## (4)

while True: ## (5)

sys.stdout.write("\n\nEnter the coordinates of the point you wish to classify: ") ## (6)

if sys.version_info[0] == 3: ## (7)

answer = input() ## (8)

else: ## (9)

answer = raw_input() ## (10)

if answer == "": sys.exit("End of interactive demonstration") ## (11)

answer = answer.strip() ## (12)

nums = answer.split() ## (13)

nums = list(map( float, nums )) ## (14)

print("\nThis AdaBoost demonstration is based on the following randomly selected

decision line orientations for the weak classifiers: %s" % str(ORIENTATIONS_USED)) ## (15)

print("\nThe lines shown pass through the decision thresholds: %s" %

str(THRESHOLDS_USED)) ## (16)

print("\nThe polarities used [polarity of +1 means all samples above threshold

declared ’SQUARES’: %s\n\n" % str(POLARITIES_USED)) ## (17)

predicted_class = final_classify(nums, outputstream) ## (18)

print("\nTHE PREDICTED CLASS for the data point: %s\n" % str(predicted_class)) ## (19)

� The user-interactive script shown above starts out in lines 2, 3,

and 4 by printing out the decision line orientations, the decision

thresholds on the perpendiculars to the lines, and the polarities

selected for the weak classifiers.

� The rest of the above script is an infinite loop in which the user

is asked for the (x, y) coordinates of a point in the [0, 1]× [0, 1]
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box that needs to be classified.

� Note that the calls in lines (14), (15), and (16) are intentionally

repeated versions of the code in lines 2, 3, and 4. This is just for

convenience so that you can see the overall parameters for the

classifier at each iteration of the interaction with the script.

� Finally, in line 18, it calls the final_classify() function of the

previous section to classify the point.

� A command-line invocation such as

AdaBoost.py

automatically places the script in the interactive mode.

� In the interactive mode, after displaying the training data

through a plot such as the one shown on page 19, and the

information related to each weak classifier constructed, the

script prints out the following message for the user:

Enter the coordinates of the point you wish to classify:

� Let’s say you enter the following coordinates: 0.2 0.7.

Subsequently, the script will print out something like the

following
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Weak classifier 0 (or: 0 thr: 0.51 p: 1 err: 0.21): square

Weak classifier 1 (or: 151 thr: -0.10 p: -1 err: 0.35): square

Weak classifier 2 (or: 90 thr: -0.04 p: -1 err: 0.51): square

Weak classifier 3 (or: 25 thr: 0.30 p: -1 err: 0.57): circle

Weak classifier 4 (or: 3 thr: 0.41 p: -1 err: 0.46): circle

Weak classifier 5 (or: 162 thr: -0.07 p: -1 err: 0.45): square

Weak classifier 6 (or: 41 thr: 0.23 p: -1 err: 0.56): circle

Weak classifier 7 (or: 117 thr: -0.07 p: -1 err: 0.43): square

Weak classifier 8 (or: 135 thr: -0.09 p: -1 err: 0.50): square

Weak classifier 9 (or: 148 thr: -0.09 p: -1 err: 0.49): square

classifications: -1 -1 -1 1 1 -1 1 -1 -1 -1

The predicted class for the data point: square

Enter the coordinates of the point you wish to classify:

� In the display shown above, I have abbreviated some of the

labels the script prints out so as not to overflow the page

boundaries. The ’or’ label is actually printed out as

’orientation’, the ’thr’ label as ’threshold’, ’p’ as ’polarity’, and,

finally, the ’err’ label as ’error rate’.

� You can exit the interactive session by entering 〈Ctrl − d〉 in

response to the prompt.
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11: Designing a Classifier Cascade

� If you have made this far into the tutorial, it’s time to read again

Section 1 “Monolithic vs. Cascaded Classifiers”. The last bullet

in Section 1 said that the AdaBoost algorithm lends itself well

to designing a cascaded classifier with a specific performance

level. The question now is: How exactly does that work?

� Shown in the figure below is a K-stage cascade.

Detected

as Trues

Detected

as Trues

Detected

as Trues

All Training 

Data

Detected
as Falses

Detected
as Falses

Detected
as Falses

Detector Detector Detector
Stage Stage Stage1 2 K

� Recall from Section 1 of this tutorial that we want each stage of

the cascade to operate with roughly the same true-positive rate

of TP and with roughly the same false-positive rate of FP .

With K stages as shown in the figure, that would imply an

overall true-positive rate of TPK and an overall false-positive

rate of FPK. As was pointed out in Section 1, if the per-stage

FP is 0.3, that would imply the overall false-positive rate of

approximately 10−6. [To explain the multiplicative changes in the true-positive and the

43



AdaBoost Tutorial by Avi Kak

false-positive rates for the case of a face detector as you add more detector stages to the cascade, note that

for a per-stage TP rate of 0.99 and a per-stage FP rate of 0.3, the first detector is going to let through 99% of

the correct faces and and 30% of the blobs that are not faces as faces. The second detector will do the same.

Therefore, the number of true faces that will make it past the second detector will be 0.992 and the number of

non-face blobs that will make it past the second detector as faces will be 0.32. And so on.]

� Obviously, the same power law will cause the overall

true-positive rate to decline to TPK as indicated above. In

order for TPK to be an acceptable number like, say, 0.9, the

per-stage true-positive rate must be very high, say like 0.99.

� So the problem of designing a cascade boils down to creating

each stage of classification with a very high true-positive rate,

like, say, 0.99, and a moderate false-positive rate like, say, 0.3.

� Setting the true-positive rate of each stage to an arbitrarily

high-value like 0.99 is trivial. Assuming that each stage of the
cascade is created with the AdaBoost algorithm, as you know
from Eq. (7) in Section 5, the final classifier in each stage makes
its decision by computing the value of H(x) for a sample x of
the training data:

H(x) = sign

(

N
∑

t=1

αtht(x)

)

(9)

where N is the number of iterations of the AdaBoost algorithm.

To review how this final classifier was used in Section 5, should

H(x) turn out to be positive, we declare the sample x as

belonging to class ’+1’; and should it turn out to be negative,
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we declare x to belong to class ’-1’. To generalize this definition

to our needs here, we carry out the following comparison

against a decision threshold d:

N
∑

t=1

αtht(x) > d (10)

Should the summation exceed the threshold d, we declare the

input sample x to belong to class ’+1’, otherwise declare it as

belonging to class ’-1’. For a given detector, we can set d to

whatever it takes for the true-positive rate to be as desired.

� Now that you can see how trivial it is to set the TP rate for a

detector at any desired level, I need to show how we can get the

FP rate to also correspond to the desired level. This is exactly

where AdaBoost comes to our rescue for designing each stage

of the cascade shown in the figure on page 43. We proceed as

follows:

For each stage of Cascade:

At each iteration t of the AdaBoost Algorithm:

Select training samples in accordance with the probability distribution

as set at iteration t-1

Scan through all weak classifiers to dicover the one with the smallest

misclassification error over the data used for this iteration. Denote this

classifier h(t)

Using all the weak classifiers h_1 through h_t, construct a composite

classifier H(x) according to Eq. (10). Choose for the decision threshold

d whatever value makes TP of H(x) equal to the target for this stage of

the cascade.

With the decision threshold d set as above, find the FP rate associated

with the composite classifier H(x).

If FP < target FP:

declare Done with this stage
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else:

go to iteration t+1 of the AdaBoost algorithm for the current stage

� The important thing to note is that the number of AdaBoost

iterations in each stage is no longer fixed. You keep on

iterating with additional weak classifiers until you have

achieved the targeted false-positive rate for the state.

� For such logic to work, you have to have a large number of weak

classifiers at your disposal. In a classic paper on face recognition

by Viola and Jones, they scanned images with 24× 24 windows

for face detection. Each 24× 24 window was characterized with

160,000 features, which each feature serving as a candidate weak

classifier for the face in that window. [All of these features were

Haar-like features you have already seen in our discussion of the SURF interest point

operator in Lecture 9. The big difference between the Haar-like features for SURF and

the same here is that they are convolutional operators in SURF but that is not the case

here. Consider, for example, the 1× 8 feature ’00001111’, which stands for the sum of

pixel values where 0’s are to be be subtracted from the sum of pixel values where 1’s

are. In SURF, you convolve the image with such a feature, but here each position of

such an operator in a 24× 24 window is a separate feature. Such a feature at each of its

positions in a 24× 24 window speaks for the presence or the absence of a face in the

entire 24× 24 window.]

� Finally, a note of caution: Sometimes people loosely refer to

each iteration of the AdaBoost algorithm as a stage. That can

lead to a lot of confusion in the context of a cascaded classifier
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framework. An AdaBoost iteration is what goes into

discovering each weak classifier inside one stage of a cascade.
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12: Introduction to Codeword-Based
Learning for Solving Multiclass Problems

� The rest of this tutorial is concerned with using AdaBoost when

you have more than two classes to deal with.

� A not-so-uncommon way to use a binary classifier (such as, say,

SVM or AdaBoost) for solving a multiclass classification

problem is to devise a set of binary classifiers, with each binary

classifier comparing one class against all the others. So if your

data is modeled by Nc classes, you would need Nc

one-versus-the-rest binary classifiers for solving the problem.

� In this tutorial, I will use a different strategy for solving a

multiclass classification problem with AdaBoost. This strategy

is based on codeword based learning.

� So what’s codeword based learning of multiclass

discriminations?

� The next several bullets explain this new idea that was first

introduced by Dietterich and Bakiri in their seminal paper

“Solving Multiclass Learning Problems via Error-Correcting

Output Codes,” Journal of Artificial Intelligence Research,
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1995. The example that I present to explain codeword based

learning is drawn from the introduction to the paper by

Dietterich and Bakiri

� Consider the problem of digit recognition in handwritten

material. We want to assign a digit to one of ten classes. A

structural approach to solving this problem consists of

identifying the presence or absence of six features in each digit

and basing the final classification on which features are found to

be present and which ones to be absent.

� The six structural features are:

vl: contains vertical line

hl: contains horizontal line

dl: contains diagonal line

cc: contains close curve

ol: contains curve open to the left

or: contains curve open to the right

� The presence or the absence of these features for each of the 10

digit classes may now be indicated by the following codeword

matrix:
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Class vl hl dl cc ol or

---------------------------------------------

0 0 0 0 1 0 0

1 1 0 0 0 0 0

2 0 1 1 0 1 0

3 0 0 0 0 1 0

4 1 1 0 0 0 0

5 1 1 0 0 1 0

6 0 0 1 1 0 1

7 0 0 1 0 0 0

8 0 0 0 1 0 0

9 0 0 1 1 0 0

Note that each row in the table shown above is distinct so that

each digit has a unique codeword.

� Let’s now assume that we only have binary classifiers at our

disposal. How can we use such classifiers to solve the multiclass

recognition problem mentioned earlier in this section?

� If all we have are binary classifiers, each column of the matrix

presented above can be learned by a binary classifier from all of

the training data in the following manner: Let’s say we have 1000

training samples of handwritten digits available to us, distributed

uniformly with respect to all the ten digits. For the learning of the first

column, we divide the set of training samples into two halves, one

containing the digits labeled 1, 4, and 5, and the other containing the digits

labeled 0, 2, 3, 6, 7, 8, and 9. We now use an SVM or AdaBoost to create

a binary classifier for making a distinction between these TWO categories,

the first corresponding to the digits 1, 4, and 5 and the second category

corresponding to the rest. We can refer to this binary classifier as f vl.
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� In this manner, we construct six binary classifiers, one for each

column of the codeword matrix shown above. We may labels

the six binary classifiers as

f_vl f_hl f_dl f_cc f_ol f_or

� Now when we want to predict the class label of a new digit, we

apply each of these six binary classifiers to the pixels for the

digit. If the output of each binary classifier is thresholded to

result in 0,1 classification, the output produced by the six

binary classifiers will be a six-bit codeword like 110001. We

assign to the new digit the class label of the row of the

codeword matrix which is at the shortest Hamming distance

from the codeword extracted for the new digit.

� For example, if the six binary classifiers yielded the codeword

110001 for the new data, you would give it the class label 4

since, of all the codewords shown in the matrix above, the

Hamming distance from 110001 is the shortest to the codeword

110000 that corresponds to the digit 4. Recall that the

Hamming distance measures the number of bit positions in

which two codewords differ.

� Does the basic idea of codeword based learning as presented

above suffer from any shortcomings? I examine this issue next.

� If the six features that correspond to the six columns of the
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codeword matrix shown above could be measured precisely, then

the basic approach outlined above should work perfectly.

� In reality, unfortunately, there will always be errors associated

with the extraction of those features from a blob of pixels. Yes,

the basic approach does give us a little bit of wiggle room for

dealing with such errors since we only use 10 out of 64 (= 26)

different possible codewords and since Hamming distance is

used to map the measured codeword to the nearest codeword in

the matrix for classification. However, the degree of protection

against errors is rather limited.

� If d is the shortest Hamming distance between any pair of the

codewords in the codeword matrix, the basic approach protects

us against making at most ⌊d−1
2 ⌋ errors in the extraction of the

codeword for a new object to be classified.

� For the codeword matrix shown on page 47, the smallest

distance is only 1 between the codewords for the digit 4 and 5.

The distance is also just 1 for the digit 7 and 8 and for 8 and 9.

What that means is that the codeword matrix of page 47

cannot tolerate any errors at all in the output of the six binary

classifiers. [Even if we did not use a set of binary classifiers to learn that

codeword matrix and relied on directly extracting the six structural features listed at

the top of page 47, representing the classes in the manner shown in the matrix of page

47 does not allow for any errors in the extraction of the six features.]
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� Let’s now see how the basic idea of a codeword matrix can be

generalized to give us greater protection against measurement

errors.

� The idea that is used for the generalization we need is based on

what’s known as error correction coding (ECC) that’s used for

reliable communications over noisy channels and for increasing

the reliability of data storage in modern computers.

� In the ECC based approach to codeword matrix design, we are

allowed to assign codewords of arbitrary length to the classes.

(This is subject to the constraint that for k classes, you will

have a maximum of 2k columns in the codeword matrix if you

want the columns to be distinct.)

� For the 10 classes of digit recognition, shown on the next page is

an example drawn from the paper by Dietterich and Bakiri in

which we assign 15-bit codewords to the classes:
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Class f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

------------------------------------------------------------------

0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1

1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

2 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1

3 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1

4 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

5 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1

6 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1

7 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

8 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1

9 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1

� Note that the columns in the codeword matrix shown above

carry no meaning — unlike the columns in the codeword matrix

of page 47 where each column stood for a visual feature.

� So you can think of the codewords shown above as having been

assigned more or less arbitrarily to the 10 different classes of

interest to us. [As we will soon see, there do exist certain constraints on how the different

codewords are laid out. Nonetheless, these constraints do not arise from a need to make the columns

of the matrix meaningful in the sense they are on page 47.]

� One thing we can be certain about is that with so many more

codewords possible with the 15 bits we now use (215 = 32768),

we can make sure that we have a large minimum Hamming

distance between any pair of codewords in the matrix.

� As before, we can use either SVM or AdaBoost classifier for the

learning required for each column of the codeword matrix on

the previous page. [Let’s denote the binary classifier for learning the first
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column by f 0. We can acquire f 0 by dividing our training samples into two

categories, one with the training samples for the classes {0, 2, 4, 6, 8}, and the other for

the classes {1, 3, 5, 7, 9}. The purpose of f 0 will be to discriminate between these two

categories. Similarly, to learn f 1, the binary classifier for the second column of the

codeword matrix, we would need to divide the training data between the positive

examples consisting of the samples for the classes {0, 4, 5, 8, 9} and the negative

examples consisting of the samples for the classes {1, 2, 3, 6, 7}. And so on.]

� Dietterich and Bakiri list the following two criteria for choosing

the codewords for the different classes for solving the multiclass

problem:

1. Row Separation: The minimum Hamming distance between any two
rows of the codeword matrix should be as large as possible.

2. Column Separation: The minimum Hamming distance between any
two columns should be large. The minimum Hamming distance

between any column and the complement of every other column
should also be large.

� The first criterion follows directly from how the “decoding” step

— meaning predicting a class label for a binary code word as

extracted from a test sample — is supposed to work (see page

48).

� Regarding the second criterion, it is based on the fact that the

logic of error correction coding (assigning to a codeword

extracted for a new object the class label for the
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Hamming-nearest codeword in the codeword matrix) works only

when the bit-wise errors committed for the different columns of

the codeword matrix are uncorrelated.

� If two columns are nearly the same, or if one column is close to

being the same as the complement of another column, the

bit-wise errors for two different positions in the codeword will be

correlated (in the sense that one error will be predictable from

the other).

� As I said earlier, if you have k classes, the largest number of

columns you can have in your codeword matrix is 2k. To all

these columns, you must apply the Column Separation criterion

mentioned on the previous page.

� The Column Separation criterion makes it difficult to create

codeword matrices for cases when the number of classes is less

than 5. [For example, when you have only 3 classes, you have k = 3. In this case,

you can have a maximum of 8 (= 23) columns. If you eliminate from these the

all-zeros and the all-ones columns, you are left with only 6 columns. Now if you

eliminate the complements of the columns, you will be left with only 3 columns for the

three classes. That does not give you much error protection in a codeword based

approach to multiclass learning.]

� The smallest number of classes in which the codeword based

approach to learning works is k = 5. Dietterich and Bakiri have
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provided the following codeword matrix for this number of

classes:

Class f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

------------------------------------------------------------------

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1

4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

� The above codeword matrix for a 5-class problem was obtained

by exhaustively searching through the different possible 15-bit

codewords for the best set that satisfied the two criteria on page

52.

� In the next section, we will use the codeword matrix shown

above to solve a contrived 5-class problem.
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13: AdaBoost for Codeword-Based Learning
of Multiclass Discriminations

� In the code archive that you can download from the URL:

https://engineering.purdue.edu/kak/distAdaBoost/AdaBoostScripts.tar.gz

in addition to the Python file AdaBoost.py that I have already

talked about, you will also find a Perl file named

MulticlassAdaBoost.pl

that is meant for showing how AdaBoost can be used to learn

multiclass discriminations. [By “multiclass”, I mean more than two classes.]

� Multiclass application of AdaBoost will be demonstrated on the

sort of randomly generated class distributions shown in the

figure on the next page.
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� When I say that the five distributions in the above figure are

“randomly generated,” what I mean is that when you work with

the code in an interactive mode, for each interactive session you

will see a different distribution for the five classes in the figure.

Of course, for each session you can feed in as many test data

points as you wish for classification and all of those

classifications will be carried out with the same training data.

� Since you already know how AdaBoost works, I’ll present this

part of the tutorial in a top-down fashion with regard to the

content of the file MulticlassAdaBoost.pl.

� The file MulticlassAdaBoost.pl starts out with the
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declarations:

my $NUMBER_OF_CLASSES = 5;

my $N = 20;

my $NUMBER_OF_WEAK_CLASSIFIERS = 10;

my %CODEWORD_MATRIX;

$CODEWORD_MATRIX{0} = [ qw/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 / ];

$CODEWORD_MATRIX{1} = [ qw/ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 / ];

$CODEWORD_MATRIX{2} = [ qw/ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 / ];

$CODEWORD_MATRIX{3} = [ qw/ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 / ];

$CODEWORD_MATRIX{4} = [ qw/ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 / ];

where the variable $N holds the number of data samples per

class, and the variable $NUMBER_OF_WEAK_CLASSIFIERS specifies

how many weak classifiers to construct for each column of the

codeword matrix. The codeword matrix shown above is the one

recommended by Dietterich and Bakiri.

� Next, the file MulticlassAdaBoost.pl declares the following

global variables:

my %TRAINING_DATA;

my %ALL_SAMPLE_LABELS_WITH_DATA;

my %COLUMNS;

my $NUMBER_OF_COLUMNS;

my %POSITIVE_CLASSES_FOR_ALL_COLUMNS;

my %NEGATIVE_CLASSES_FOR_ALL_COLUMNS;

my %ORIENTATIONS_USED_FOR_ALL_COLUMNS;

my %WEAK_CLASSIFIERS_FOR_ALL_COLUMNS;

my %WEAK_CLASSIFIER_ERROR_RATES_FOR_ALL_COLUMNS;

my %ALPHAS_FOR_ALL_COLUMNS;

Several of these variables, whose names should convey the

purpose they serve, are meant for convenience. [While all of the

training data for all the classes is held in the hash %TRAINING DATA where the keys are

the class indexes, we also store the same data in the hash

%ALL SAMPLE LABELS WITH DATA where the keys are the ”class-x-sample-i” tags
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associated with the different data points. The hash %COLUMNS holds the individual

columns of the %CODEWORD MATRIX hash introduced earlier. The keys of the %COLUMNS

hash are the column indexes and the values the columns of the codeword matrix. The

variable $NUMBER OF COLUMNS is set to the number of columns of the codeword matrix.]

� The variables %POSITIVE_CLASSES_FOR_ALL_COLUMNS and

%CLASSES_CLASSES_FOR_ALL_COLUMNS shown on the previous page

store for each column the positive classes and negative classes,

respectively. [To explain what is meant by positive and negative classes for a

column, let’s look at the column indexed 0 in the codeword matrix shown on page 54.

For this column, there exists just a single positive class, which is the class indexed 0.

On the other hand, this column has 4 negative classes, these being classes index 1, 2,

3, 4. Along the same lines, for the column indexed 1 on page 54, the positive classes

are indexed 0 and 4, and the negative classes indexed 1, 2, and 3.] The positive

and the negative classes for the different columns of the

codeword matrix are set by:

sub set_positive_and_negative_classes_for_columns {

1 $NUMBER_OF_COLUMNS = @{$CODEWORD_MATRIX{0}};

2 foreach my $col_index (0..$NUMBER_OF_COLUMNS-1) {

3 my @column_bits = @{$COLUMNS{$col_index}};

4 my (@positive_classes, @negative_classes);

5 foreach my $bit_index (0..@column_bits-1) {

6 push @{$POSITIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}},

7 $bit_index if $column_bits[$bit_index];

8 push @{$NEGATIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}},

9 $bit_index unless $column_bits[$bit_index];

10 }

11 }

}

� Starting with page 60, I show the workhorse of
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MulticlassBadaBoost.pl script. It’s this script’s job to create all

of the weak classifiers for the binary classification for the

positive and the negative examples designated by the 1’s and

the 0’s of a given column of the codeword matrix. The index of

the column that this script is supposed to work on is supplied as

its argument. In the script itself, the column index becomes the

value of the local variable $col_index in line 1.

� Lines 2 through 14 of the script on page 60 are primarily for

initializing the probability distribution of the training samples

in accordance with the comments made earlier in Section 4.

� The search for the weak classifiers begins in line 20. In lines 21

through 31, we use the current probability distribution over the

training samples to choose a subset of the training data for the

next weak classifier.

� The logic used in lines 32 through 63 for the construction of a

weak classifier is exactly the same as described in Section 7 of

this tutorial. [For a weak classifier, we randomly choose an orientation for the

decision line, an example of which was shown in the figure on page 22. We then move

this decision along its perpendicular until we find a position where the classification

error rate over the training samples being used is the least. When we find the best

position of the decision line, we take into account both polarities for the classification

rule expressed by the decision line. The best location of the line on the perpendicular

gives us the decision threshold dth to use for this weak classifier.]
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� In lines 65 through 70, we set the value of αt as required by

Step 4 in Section 5. Note that the implementation you see for

the calculation of αt differs from its analytical form in Section 5.

The reason is that the analytical form shown in Section 5

becomes problematic when the error rate ǫt is zero. As shown in

line 69, when the error rate is less than 0.00001, we clamp αt at

a high value of 5.

� Lines 71 through 103 are devoted to the calculation of the new

probability distribution over the training samples according to

the classification errors made by the weak classifier just

constructed. This calculation uses the formula shown in Step 5

in Section 5.

sub generate_weak_classifiers_for_one_column_of_codeword_matrix {

1 my $col_index = shift;

2 my @positive_classes =

3 @{$POSITIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};

4 my @negative_classes =

5 @{$NEGATIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};

6 my $N_positives = 0;

7 foreach my $class_index (@positive_classes) {

8 $N_positives += @{$TRAINING_DATA{$class_index}};

9 }

10 my $N_negatives = 0;

11 foreach my $class_index (@negative_classes) {

12 $N_negatives += @{$TRAINING_DATA{$class_index}};

13 }

14 my $N_total = $N_positives + $N_negatives;

15 my %probability_over_samples;

16 foreach my $label (keys %ALL_SAMPLE_LABELS_WITH_DATA) {

17 $probability_over_samples{$label} = 1.0 / $N_total;

18 }

19 my $decision_line_orientation = 0;
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20 foreach my $t (0..$NUMBER_OF_WEAK_CLASSIFIERS-1) {

21 my @samples_to_be_used_for_training = ();

22 # Select training samples for the current weak classifier:

23 my $probability_mass_selected_samples = 0;

24 foreach my $label (sort {$probability_over_samples{$b} <=>

25 $probability_over_samples{$a} }

26 keys %probability_over_samples) {

27 $probability_mass_selected_samples +=

28 $probability_over_samples{$label};

29 last if $probability_mass_selected_samples > 0.8;

30 push @samples_to_be_used_for_training, $label;

31 }

32 while (contained_in($decision_line_orientation,

33 @{$ORIENTATIONS_USED_FOR_ALL_COLUMNS{$col_index}})) {

34 $decision_line_orientation =

35 int(180 * Math::Random::random_uniform());

36 }

37 push @{$ORIENTATIONS_USED_FOR_ALL_COLUMNS{$col_index}},

38 $decision_line_orientation;

39 my $learned_weak_classifier =

40 find_best_weak_linear_classifier_at_given_orientation(

41 $decision_line_orientation, \@positive_classes,

42 \@negative_classes );

43 push @{$WEAK_CLASSIFIERS_FOR_ALL_COLUMNS{$col_index}},

44 $learned_weak_classifier;

45 my ($orientation, $threshold, $polarity,

46 $error_over_training_samples) = @{$learned_weak_classifier};

47 my $error = 0;

48 foreach my $label (keys %ALL_SAMPLE_LABELS_WITH_DATA) {

49 my $data_point = $ALL_SAMPLE_LABELS_WITH_DATA{$label};

50 my $predicted_label = weak_classify($data_point,

51 $orientation, $threshold, $polarity);

52 $label =~ /class_(\d+)_sample/;

53 my $class_index_for_label = $1;

54 next if (contained_in($class_index_for_label,

55 @positive_classes) &&

56 ($predicted_label eq ’positive’)) ||

57 (contained_in($class_index_for_label,

58 @negative_classes) &&

59 ($predicted_label eq ’negative’));

60

61 $error += $probability_over_samples{$label};

62 }

63 push @{$WEAK_CLASSIFIER_ERROR_RATES_FOR_ALL_COLUMNS{$col_index}},
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64 $error;

65 if ($error > 0.00001) {

66 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$t] =

67 0.5 * log((1 - $error) / $error);

68 } else {

69 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$t] = 5;

70 }

71 my %new_probability_over_samples;

72 for my $label (keys %probability_over_samples) {

73 my $data_point_for_label =

74 $ALL_SAMPLE_LABELS_WITH_DATA{$label};

75 my $predicted_label = weak_classify($data_point_for_label,

76 $orientation, $threshold, $polarity);

77 my $exponent_for_prob_mod;

78 $label =~ /class_(\d+)_sample/;

79 my $class_index_for_label = $1;

80 if ( (contained_in($class_index_for_label,

81 @positive_classes) &&

82 ($predicted_label eq ’positive’)) ||

83 (contained_in($class_index_for_label,

84 @negative_classes) &&

85 ($predicted_label eq ’negative’)) ) {

86 $exponent_for_prob_mod = -1.0;

87 } else {

88 $exponent_for_prob_mod = 1.0;

89 }

90 $new_probability_over_samples{$label} =

91 $probability_over_samples{$label} *

92 exp($exponent_for_prob_mod *

93 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$t]);

94 }

95 my @all_new_probabilities = values %new_probability_over_samples;

96 my $normalization = 0;

97 foreach my $prob (@all_new_probabilities) {

98 $normalization += $prob;

99 }

100 for my $label (keys %new_probability_over_samples) {

101 $probability_over_samples{$label} =

102 $new_probability_over_samples{$label} / $normalization;

103 }

104 }

}
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� Another subroutine that plays a key role in the codeword based

multiclass discriminations is

final classify for one column of codeword matrix() whose job is

to aggregate the classifications returned by each of the weak

classifiers for a given column and return the final classifications

of a new data point. Shown on the next page is the

implementation of this subroutine. [This subroutine takes two

arguments, the column index and the data point you want to classify. These become

the values of local variables in lines 1 and 2 on the next page.]

� After fetching the weak classifiers for the designated column in

lines 3 and 4, the loop in lines 8 through 26 queries each of the

weak classifiers and formats their output for the presentation of

the results in lines 25 through 28.

� For aggregating the results returned by the individual weak

classifiers, we use the formula in Section 5. This aggregation is

implemented in lines 33 through 44.

� Note that the call to weak classify() in line 11 has the same

implementation as shown previously in Section 9.

sub final_classify_for_one_column_of_codeword_matrix {

1 my $col_index = shift;

2 my $data_point = shift;

3 my $number_of_weak_classifiers_for_this_column =

4 scalar( @{$WEAK_CLASSIFIERS_FOR_ALL_COLUMNS{$col_index}} );
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5 my @classification_results;

6 my @weak_classifiers_for_this_column =

7 @{$WEAK_CLASSIFIERS_FOR_ALL_COLUMNS{$col_index}};

8 foreach my $t (0..$number_of_weak_classifiers_for_this_column-1) {

9 my ($orientation, $threshold, $polarity, $error) =

10 @{$weak_classifiers_for_this_column[$t]};

11 my $result = weak_classify($data_point, $orientation,

12 $threshold, $polarity);

13 my $error_rate =

14 $WEAK_CLASSIFIER_ERROR_RATES_FOR_ALL_COLUMNS{$col_index}->[$t];

15 $error_rate =~ s/^(0\.\d\d)\d+$/$1/;

16 $error_rate = " $error_rate" if length($error_rate) == 1;

17 $threshold =~ s/^(-?\d?\.\d\d)\d+$/$1/;

18 $threshold = $threshold < 0 ? "$threshold" : " $threshold";

19 if (length($orientation) == 1) {

20 $orientation = " $orientation";

21 } elsif (length($orientation) == 2) {

22 $orientation = " $orientation";

23 }

24 $polarity = $polarity > 0 ? " $polarity" : $polarity;

25 print "[Column $col_index] Weak classifier $t " .

26 "(orientation: $orientation threshold: $threshold " .

27 "polarity: $polarity error_rate: $error_rate): " .

28 "$result\n";

29 push @classification_results, $result;

30 }

31 #For weighted pooling of the results returned by the different

32 #classifiers, treat "positive" as +1 and "negative" as -1

33 @classification_results =

34 map {s/positive/1/;$_} @classification_results;

35 @classification_results =

36 map {s/negative/-1/;$_} @classification_results;

37 print "[Column $col_index] weak classifications:

38 @classification_results\n";

39 my $aggregate = 0;

40 foreach my $i (0..@classification_results-1) {

41 $aggregate += $classification_results[$i] *

42 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$i];

43 }

44 return $aggregate >= 0 ? "positive" : "negative";

}
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14: An Interactive Session That Shows the
Power of a Single Column of Codeword

Matrix as a Binary Classifier

� When you first fire up MulticlassAdaBoost.pl, it will prompt

you for whether you want the multiclass classifier as learned

from the entire codeword matrix, or a single binary classifier for

a single column of the matrix. If you opt for the latter, the

script will enter the column-interactive mode and it will ask you

to enter the column index for the column you are interested in.

� When you choose the single-column option in your response to

the prompts, the script invokes the overall interactive()

subroutine.

� Shown on the next page is the implementation of the subroutine

column interactive().

� The interactive part of the script is the infinite loop in lines 12

through 36. The code in lines 13 through 26 first prompts the

user for data entry and then checks that what the user entered

makes sense. Line 17 is to allow for a user to terminate the

interactive session at any time by entering 〈Ctrl − d〉.
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� The result returned by calling final classify for

one column of codeword matrix() in line 27 is either ’positive’ or

’negative’. The former means that the data point supplied by

the user belongs to one the positive classes for this class as

fetched in line 2 of the script. And the latter means that the

result belongs to one of the negative classes fetched in line 4.

sub column_interactive {

1 my $col_index = shift;

2 my @positive_classes =

3 @{$POSITIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};

4 my @negative_classes =

5 @{$NEGATIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};

6 generate_weak_classifiers_for_one_column_of_codeword_matrix(

7 $col_index);

8 print "\n\nThis column-specific demonstration is based on " .

9 "the following randomly selected decision line " .

10 "orientations for the weak classifiers: " .

11 " @{$ORIENTATIONS_USED_FOR_ALL_COLUMNS{$col_index}}\n\n’’;

12 for (;;) {

13 print "\n\nEnter the coordinates of the point you wish to " .

14 "classify: ‘‘;

15 my $answer = <STDIN>;

16 chomp $answer;

17 die ‘‘End of interactive demonstration’’ unless $answer;

18 next if $answer =~ /^\s*$/;

19 my @nums = split / /, $answer;

20 unless (($nums[0] =~ /$_num_regex/) &&

21 ($nums[1] =~ /$_num_regex/)) {

22 print "You entered an illegal character. " .

23 "Try again or enter Contrl-D to exit\n’’;

24 next;

25 }

26 my $predicted_class =

27 final_classify_for_one_column_of_codeword_matrix($col_index,

28 \@nums);

29 if ($predicted_class eq ’positive’) {

30 print "The data point (@nums) is predicted to be in " .
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31 "one of these classes: @positive_classes\n’’;

32 } elsif ($predicted_class eq ’negative’) {

33 print "The data point (@nums) is predicted to be in " .

34 "one of these classes: @negative_classes\n’’;

35 }

36 }

}

When you invoke MulticlassAdaBoost.pl in the

column-interactive mode, you will see a popup window with a plot

such as the one shown on page 56 and the following sort of output

in your terminal window:

=> MulticlassAdaBoost.pl

Prining out the points in class 0:

class_0_sample_0 0.0388130199253125 0.306701274378974

class_0_sample_1 -0.0483082434657033 0.333167487289401

....

....

Prining out the points in class 1:

class_1_sample_0 0.439181892150296 0.15767914403357

class_1_sample_1 0.341741264689717 0.290947662466462

....

....

Prining out the points in class 2:

class_2_sample_0 0.62339139639785 0.233743754191426

class_2_sample_1 0.663987994007291 0.185020510091793

....

....

Prining out the points in class 3:

class_3_sample_0 0.0119872353686556 0.505153721523502

class_3_sample_1 0.192827443382858 0.416779605628115

....

....

....

....

Column 0: 1 0 0 0 0

Column 1: 1 0 0 0 1

Column 2: 1 0 0 1 0
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Column 3: 1 0 0 1 1

....

....

This column-specific demonstration is based on the following

randomly selected decision line orientations for the weak

classifiers: 0 173 55 37 96 105 174 113 166 30

Enter the coordinates of the point you wish to classify:

You enter the coordinates of the point you wish to classify in

response to the prompt you see at the bottom.

Let’s say you enter something like “0.2 0.6” in response to the

prompt. Next, the system will come back with the following sort of

classification results for your point:

[Column 5] Weak classifier 0 (.........): positive

[Column 5] Weak classifier 1 (.........): positive

[Column 5] Weak classifier 2 (.........): negative

[Column 5] Weak classifier 3 (.........): negative

[Column 5] Weak classifier 4 (.........): negative

[Column 5] Weak classifier 5 (.........): negative

[Column 5] Weak classifier 6 (.........): positive

[Column 5] Weak classifier 7 (.........): negative

[Column 5] Weak classifier 8 (.........): positive

[Column 5] Weak classifier 9 (.........): negative

[Column 5] weak classifications: 1 1 -1 -1 -1 -1 1 -1 1 -1

The data point (0.2 0.6) is predicted to be in one of these classes: 1 3

Enter the coordinates of the point you wish to classify:

where I have suppressed a lot of information regarding each weak

classifier that is printed out inside the parentheses that currently

just have dots.
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� Each row of the output shown on the previous page starts with

the column of the codeword matrix whose discriminatory power

you are investigating. Recall that any single column can only

carry out a binary classification into two groups of classes, those

corresponding to the 1’s in the column and those corresponding

to the 0’s in the column.

� When a weak classifier reports ’positive’ for the classification of

the point you supplied, it means that, according to the weak

classifier, the point belongs to the classes corresponding to the

1’s in the column. Similarly, for the ’negative’ classification.
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15: An Interactive Session for
Demonstrating Multiclass Classification with

AdaBoost

� If you entered “1” in response to the prompt when you first

fired up MulticlassAdaBoost.pl, the demo will work in the

overall-interactive mode. In this mode, you will again see the

output that was shown in a highly abbreviated form on page 69

for the column-interactive mode of operation of the script. As

mentioned there, the output ends in the following prompt:

Enter the coordinates of the point you wish to classify:

� You are also shown a plot of the sort you saw on page 58 to help

you decide what coordinates you should supply for

classification. Let’s say you entered “0.2 0.3” in response to the

question shown above, you will see the kind of output that is

displayed as shown below.

[Column 0] Weak classifier 0 (..........): negative

[Column 0] Weak classifier 1 (..........): negative

....

....

[Column 0] weak classifications: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[Column 1] Weak classifier 0 (..........): negative

[Column 1] Weak classifier 1 (..........): negative

....
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....

[Column 1] weak classifications: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[Column 2] Weak classifier 0 (..........): negative

[Column 2] Weak classifier 1 (..........): negative

....

....

[Column 2] weak classifications: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[Column 3] Weak classifier 0 (..........): negative

[Column 3] Weak classifier 1 (..........): negative

....

....

[Column 3] weak classifications: -1 -1 -1 -1 -1 -1 -1 1 -1 -1

[Column 4] Weak classifier 0 (..........): negative

[Column 4] Weak classifier 1 (..........): positive

....

....

[Column 4] weak classifications: -1 1 -1 1 1 -1 -1 -1 -1 -1

[Column 5] Weak classifier 0 (..........): positive

[Column 5] Weak classifier 1 (..........): positive

....

....

[Column 5] weak classifications: 1 1 -1 -1 -1 -1 -1 -1 1 -1

[Column 6] Weak classifier 0 (..........): positive

[Column 6] Weak classifier 1 (..........): positive

....

....

[Column 6] weak classifications: 1 1 -1 -1 -1 -1 -1 -1 -1 -1

[Column 7] Weak classifier 0 (..........): positive

[Column 7] Weak classifier 1 (..........): positive

....

....

[Column 7] weak classifications: 1 1 -1 1 1 1 -1 1 -1 -1

[Column 8] Weak classifier 0 (..........): negative

[Column 8] Weak classifier 1 (..........): negative

....

....

....

....

[Column 14] weak classifications: 1 1 1 1 1 1 1 1 1 1

Predicted codeword for point (.2 .3) is: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Predicted class label for (0.2 0.3): 1 [with Hamming Distance: 0]

Enter the coordinates of the point you wish to classify:

� Note the final classification result near the bottom of the display
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shown above. It says that the predicted class label is ’1’. It also

says that the Hamming distance between the binary code word

obtained from the 15 columns of the codeword matrix and the

codeword corresponding to class 1 is zero. In this case, we

happen to be right on target. A cool thing about this user

interaction is that you can verify the accuracy of the predicted

class label by examining your point on the plot (like the one

shown on page 58) that stays on your screen.

� In the overall-interactive, the data point you want to classify is

handed over to the function final classify with all columns()

whose implementation is shown next.

sub final_classify_with_all_columns {

1 my $data_point = shift;

2 my @prediction_codeword;

3 foreach my $col_index (0..$NUMBER_OF_COLUMNS-1) {

4 generate_weak_classifiers_for_one_column_of_codeword_matrix(

5 $col_index) unless $WEAK_CLASSIFIERS_ALREADY_GENERATED;

6 my $predicted_class =

7 final_classify_for_one_column_of_codeword_matrix(

8 $col_index, $data_point);

9 push @prediction_codeword, 1 if $predicted_class eq ’positive’;

10 push @prediction_codeword, 0 if $predicted_class eq ’negative’;

11 }

12 print "\nThe predicted codeword for the data point " .

13 "(@{$data_point}) is: @prediction_codeword\n’’;

14 my $number_of_rows = scalar(keys %CODEWORD_MATRIX);

15 my %hamming_distance;

16 foreach my $row_index (0..$number_of_rows-1) {

17 my @codeword = @{$CODEWORD_MATRIX{$row_index}};

18 $hamming_distance{$row_index} = 0;

19 foreach my $bit_index (0..$NUMBER_OF_COLUMNS-1) {
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20 $hamming_distance{$row_index}++

21 if $prediction_codeword[$bit_index] !=

22 $codeword[$bit_index];

23 }

24 }

25 my @sorted_rows = sort {$hamming_distance{$a} <=>

26 $hamming_distance{$b}} keys %hamming_distance;

27 print "\n\nPredicted class label for (@{$data_point}): " . "

28 "$sorted_rows[0] [with Hamming Distance: " .

29 "$hamming_distance{$sorted_rows[0]}]\n’’;

}

� As it must, the subroutine shown above first calls on

generate_weak_classifiers_for_one_

_column_of_codeword_matrix() in line 4 to generate the weak

classifiers for each column of the codeword matrix.

� Subsequently, in lines 6 and 7, it calls on

final_classify_for_one_column_of_codeword_matrix() to use

weak classifiers for each column to carry out a binary

classification of the new data point. When the class returned is

’positive’, the new data point belongs to one of the classes

whose bit is 1 in the column. Otherwise, its classification would

be ’negative’.

� From the ’positive’ or ’negative’ labels returned for each of the

column binary classifiers, we construct a codeword for the new

data point in lines 9 and 10.
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� In the rest of the script, we compare the codeword thus formed

for the new data point against the codewords for each of the

classes in the codeword matrix. This gives us the Hamming

distance between the codeword for the new data point and the

class codewords. In lines (25) through (30), we declare for the

final classification that class label which is at the shortest

Hamming distance to the codeword for the new data point.
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