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a b s t r a c t 

This work takes important steps towards solving the following problem of current interest: Assuming 

that each individual in a population can be modeled by a single frontal RGBD face image, is it possible 

to carry out face recognition for such a population using multiple 2D images captured from arbitrary 

viewpoints? Although the general problem as stated above is extremely challenging, it encompasses sub- 

problems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating 

a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) 

using hierarchical approaches based on view-partitioned subspaces to represent the training data; and 

(3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence 

collected from multiple images of the same face as recorded from different viewpoints. We evaluate our 

methods on three datasets: a dataset of 10 people that we created and two publicly available datasets 

which include a total of 48 people. In addition to providing important insights into the nature of this 

problem, our results show that we are able to successfully recognize faces with accuracies of 95% or 

higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional 

neural networks. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Face recognition is now considered to be a reliable and non-

ntrusive biometric. Several algorithms that have been proposed

uring the last decade can now achieve accuracies that far exceed

0%. Such high levels of accuracy, however, can only be obtained

or ‘normalized’ frontal face images. These algorithms perform less

han adequately when constraints are removed on the orientation

f the camera vis-à-vis the face. Although there have been many

ttempts at replicating such results in unconstrained scenarios by

utomating the face normalization step, most methods that have

een proposed to date are of questionable reliability. The general

roblem of recognizing faces under unconstrained conditions re-

ains largely unsolved even for seemingly easy scenarios such as

hen there is sufficient illumination, the motion of the human

ubject is slow compared to the camera frame rate, and when high

esolution cameras are employed. A solution to this general prob-

em would be relevant in a number of applications, which include

ace verification and identification in static imagery ( Abate et al.,
∗ Corresponding author. Tel.: +1 765 494 3551 

E-mail addresses: zava@purdue.edu (D. Kim), bcomandu@purdue.edu 

(B. Comandur), henry.medeiros@marquette.edu (H. Medeiros), nelfiky@purdue.edu 

N.M. Elfiky), kak@purdue.edu (A.C. Kak). 

g  

r  

o  

r  

f  

o  

ttp://dx.doi.org/10.1016/j.cviu.2017.04.008 

077-3142/© 2017 Elsevier Inc. All rights reserved. 

Please cite this article as: D. Kim et al., Multi-view face recognition fro

Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.04.008 
007; Phillips et al., 2011; Zhao et al., 2003 ), video ( Krueger and

hou, 2002; Lee et al., 2003 ), and with camera networks ( An et al.,

012; Du et al., 2014 ). 

The problem of recognizing faces under unconstrained condi-

ions, also known as "face recognition in the wild", deals with as-

igning a face identity label to a set of face images collected by an

ssortment of cameras at random orientations with respect to the

ace. Imagine a human subject being tracked by the cameras at a

rowded public place like an airport or a city square. This prob-

em has become very important in recent years with the advent

f camera networks. Most major cities now have surveillance cam-

ras installed in public places. As the reader can imagine, in its

ost general form, it is an extremely challenging problem. When

e attempt face recognition from the images in a video or in other

ulti-view scenarios, there is no guarantee that any of the col-

ected images would constitute a full frontal view of a face. In ad-

ition, we must also cope with other effects such as those caused

y uncontrolled illumination. 

While the difficulties mentioned above can be expected to de-

rade the performance of any face recognition algorithm, one could

aise the following question: Is it possible to compensate for some

f the difficulties by leveraging the availability of multiple images

ecorded from different viewpoints? That is, can multiple images

rom different viewpoints of the same face compensate for the lack

f a single frontal image and controlled illumination? It is this
m single RGBD models of the faces, Computer Vision and Image 
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question that is the focus of this paper. If the reader accepts the

validity of the question, the problem becomes one of how to pool

together the visual evidence from the different viewpoints for clas-

sifying a face. 

Some previous approaches have attempted to solve this prob-

lem by taking advantage of the machine learning algorithms made

possible by the availability of large scale datasets of labeled faces

in the wild ( Huang et al., 2007; Lu and Tang, 2014; Taigman et al.,

2014 ; Zhou et al., 2015 ). While these approaches have obtained

impressive results, achieving accuracies as high as 99.5% and even

surpassing the 97.53% accuracy obtained by human observers, they

suffer from two main limitations. First, they rely on the existence

of massive datasets for training purposes. While such datasets may

be readily available for celebrities and other personalities, generat-

ing very large datasets for a broader population would be challeng-

ing. We are more interested, therefore, in a more practical scenario

in which a classifier can be trained with a single snapshot of the

target. Second, even when such large datasets are available, these

methods have been shown to map poorly to alternative datasets

collected from a general population, which limits their practical

applicability. In (Zhou et al., 2015 ), for example, the authors have

shown that when their approach based on multiple deep convolu-

tional networks is applied to a real-world dataset of faces collected

by the authors, the accuracy falls to 66% compared to the 99.5% ac-

curacy obtained for the LFW dataset. 

This paper makes a small but important step in our understand-

ing of whether it is possible to attempt face recognition under un-

constrained conditions when our training data consists of a single

frontal RGBD image for each human subject. Since, as mentioned

above, the general problem of unconstrained face recognition is

quite broad, we focus here on this particular subproblem in or-

der to get a better understanding of the issues involved in pool-

ing together the visual evidence from multiple viewpoints. Within

the context of our subproblem, given the RGBD images, we are

faced with issues such as how to best extract viewpoint oriented

2D images from the models; how to best extract class discrimi-

natory information from these 2D images that are likely to reside

on low-dimensional manifolds in high-dimensional measurement

spaces ( Okada and von der Malsburg, 2002; Seung and Lee, 20 0 0;

Wu and Souvenir, 2015 ); and, finally, how to construct a classifier

that makes an identity decision based on a set of test face images

collected from random viewpoints. 

In order to solve these problems, we first create multi-view

training data from single frontal RGBD images of the human faces.

We then view-partition the manifolds on which the data resides in

order to identify the optimal subspaces in which groups of similar

faces can be found together. We explore two different approaches

for view-partitioning the training data, namely, pose based and ap-

pearance based. 

Subsequently, we investigate how to best carry out multi-

view classification by comparing view-partitioned approaches with

global approaches. We study two different types of global ap-

proaches, one in which all of the training data for all human sub-

jects is thrown into a single global subspace, and the other in

which we create a separate person-specific global subspace for

each human subject. 

The view-partitioned approaches that we investigate create the

possibility of carrying out weighted voting when combining the

classification labels for a given set of test 2D images of the same

face (as recorded from different viewpoints) into a single identity

label. We do so by devising a weighting mechanism that uses the

inverse of the normalized subspace reconstruction error for each

test image as the weight that its classification label should carry

in a multi-view aggregation of those labels. 

This paper makes four main contributions. First, it presents a

novel hierarchical approach for multi-view face recognition. Sec-
Please cite this article as: D. Kim et al., Multi-view face recognition fro

Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.04.008 
nd, it proposes a weighted voting scheme for improved face

ecognition as obtained by combining the classification labels for

he face images from different viewpoints. Third, it presents a new

ataset of RGBD face images for the evaluation of multi-view face

ecognition algorithms. Finally, this paper includes an extensive

valuation and analysis of several approaches for carrying out data

lustering and classification for the purpose of face recognition. 

The remainder of this paper is organized as follows.

ection 2 briefly reviews some of the most relevant works

elated to the topic of face recognition in relatively uncon-

trained scenarios such as in videos and with camera networks.

ection 3 proposes several approaches to devising face recognition

lgorithms that can be trained using a single RGBD image of each

uman subject, and Section 4 discusses the methods we employ

o combine the classification results obtained from several query

mages of the same face from different viewpoints. An extensive

xperimental evaluation is then presented in Section 5 , which is

ollowed by our concluding remarks in Section 6 . 

. Prior work 

Attempts at automatic recognition of faces using non-frontal

magery have generally involved constructing partial or full 3D

odels of the human head and then morphing the models in or-

er to best describe the test images. For the case of static imagery,

here are two different classes of algorithms that come under this

ategory. In the first class, the training protocol includes gener-

ting off-normal images of the face by directly applying a pose-

ransform to the frontal image ( Beymer, 1994; Beymer and Poggio,

995; Lando and Edelman, 1995 ). At test time, the recognizer first

ocates prominent facial features and then uses these locations to

eometrically register the input with multiple example views. Sub-

equently, a correlation based operation is used to find the best

atch from the database. In the second approach, the goal is to

se some sort of a range sensor to create a generic 3D point cloud

odel of either the whole head or of a set of salient points on the

ead ( Blanz and Vetter, 2003; Georghiades et al., 2001; Niinuma

t al., 2013; Vetter and Blanz, 1998; Zhao and Chellappa, 20 0 0 ).

ubsequently, this model, along with the accompanying texture in-

ormation, can be manipulated to create off-normal training im-

ges for a human subject. At test time, a query image is gener-

lly manually annotated for the salient features of a face and the

D model is morphed to fit the query image through these salient

oints. 

.1. Recognizing faces in videos 

Recognizing a face in a video involves the following processes

hat may need to run concurrently: a tracking/detection mecha-

ism, a crucial alignment step, and a recognition algorithm, which

enerally attempts to exploit the availability of multiple image

rames. Each of these three steps is complex and is an active sub-

ect of ongoing research ( Choi et al., 2012; Hassner et al., 2015;

labort-i Medina et al., 2014; Sagonas et al., 2013a; Sung et al.,

008; Tzimiropoulos, 2015; Tzimiropoulos and Pantic, 2013; Yoder

t al., 2010 ). Regarding face tracking, a comprehensive survey of

he existing approaches is presented in Chrysos et al. (2016) . In

 particularly relevant example, Marras et al. (2014) proposed a

article filtering method that uses the reconstruction error from

earned subspaces to determine face orientation. As for face de-

ection, although it is still a largely unsolved problem (especially

f large variations in face poses are allowed), much progress has

een made in this area during the last decade and a half ( Hjelmås

nd Low, 2001; Viola and Jones, 2001; Yang et al., 2002; Zhang

nd Zhang, 2010 ). While face detection is generally regarded as the

tarting point for all face analysis tasks ( Zafeiriou et al., 2015 ), face
m single RGBD models of the faces, Computer Vision and Image 
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lignment is an essential intermediate step for many subsequent

igher level tasks that range from biometric recognition to the in-

erpretation of emotions. We discuss the issue of face alignment in

ore detail below. 

.1.1. Face alignment 

The problem of face alignment is a well-studied topic in com-

uter vision ( Hassner et al., 2015; Matthews and Baker, 2004;

labort-i Medina et al., 2014; Tzimiropoulos, 2015; Xiong and

e la Torre, 2013 ). Face alignment is widely used by face recog-

ition algorithms to improve their robustness against pose varia-

ions. Face recognition algorithms, such as those based on feature-

ased (structural) matching ( Campadelli et al., 2003; Zhao et al.,

003 ), rely on accurate face alignment to establish correspon-

ences for the local features (e.g. eyes, nose, mouth, etc.) used for

atching. 

Over the last two decades, numerous techniques have been

eveloped for face alignment with varying degrees of success.

eliktutan et al. (2013) have surveyed many traditional methods

or face alignment for both 2D and 3D faces. For a more recent

urvey, see Yang et al. (2015) . In general terms, face alignment can

e formulated as a problem of searching over a face image for

re-defined feature points (also called face shape) that typically

tarts with a coarse initial shape and then proceeds by refining the

hape estimate step by step until convergence. During the search

rocess, two different sources of information are typically used:

ace appearance and face shape. Typically, faces are modeled as de-

ormable objects that can vary in shape and appearance. Much of

he early work along these lines was based on Active Shape Models

ASMs) and Active Appearance Models (AAMs) ( Cootes et al., 2001;

995; Tzimiropoulos and Pantic, 2013 ). In ASMs, face shape is ex-

ressed as a linear combination of shape bases learned through

rincipal Component Analysis (PCA), while appearance is modeled

ocally using (most commonly) discriminatively learned templates. 

AAMs, first proposed by Cootes et al. (2001) , are linear statisti-

al models of both the shape and the appearance of a deformable

bject. Since AAM models can generate a variety of instances with

nly a small number of model parameters, they have been used

idely in many computer vision tasks, such as face recognition

 Lanitis et al., 1997 ), object tracking ( Stegmann and Olsen, 2001 ),

nd medical image analysis ( Stegmann et al., 2003 ). Despite their

opularity and success, AAMs are generally considered to possess

nly limited representational power when used in unconstrained

onditions. One possible way to overcome these drawbacks is to

se part-based representations since local features are generally

ot as sensitive to lighting and occlusion as global features. ASMs

re a notable example of part-based models ( Cootes and Taylor,

992; Cootes et al., 1995 ) that combine the generative appearance

odel for each face part with a Point Distribution Model for the

lobal shape. More recently, the focus has shifted to a family of

ethods known as Constrained Local Models (CLMs) ( Cristinacce

nd Cootes, 2006; Lucey et al., 2009; Saragih et al., 2011 ) that

uild upon ASM to model individual face parts using discrimina-

ively trained local detectors ( Asthana et al., 2013; Cristinacce and

ootes, 2007; Lindner et al., 2015; Saragih et al., 2011 ). In the train-

ng phase, a CLM learns an independent local detector for each face

oint and a prior shape model to characterize the deformation of

he face shape. For testing, face alignment is typically formulated

s an optimization problem to find the best fit of the shape model

o the test image. 

Research in multi-view face recognition has been significantly

nfluenced by the availability of large annotated datasets con-

isting of face images recorded under unconstrained conditions

 Belhumeur et al., 2013; Crabtree et al., 2013; Le et al., 2012;

ogers, 2011; Sagonas et al., 2013b; Zhu and Ramanan, 2012 ).

hese datasets have been used to develop a variety of cascaded
Please cite this article as: D. Kim et al., Multi-view face recognition fro

Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.04.008 
egression-based techniques ( Asthana et al., 2011; Cao et al., 2014;

azemi and Sullivan, 2014; Ren et al., 2014; Sun et al., 2013; Tz-

miropoulos and Pantic, 2014; Valstar et al., 2010; Xiong and De la

orre, 2013; Zhu et al., 2015 ) that have proved very successful in

olving the face alignment problem. The motivation behind cas-

aded regression is that, since performing regression from image

eatures to face shape in one step is extremely challenging, we

an divide the regression process into stages by learning a cascade

f vectorial regressors. As in related computer vision tasks such

s human pose estimation ( Liu et al., 2015; Yang and Ramanan,

013 ), such methods are particularly successful when associated

ith generative deformable part models ( Tzimiropoulos and Pan-

ic, 2014 ). Despite the substantial progress made in face alignment

n recent years, it is still unclear if the ability to determine the ori-

ntation of a face will translate into more accurate face recognition

pproaches for unconstrained scenarios in which face orientations

ay vary dramatically and frontal reconstructions are likely to be

eavily distorted. 

.1.2. Exploiting multiple image frames for video-based face 

ecognition 

Rather than attempting to carry out face frontalization on

ach frame, most video-based face recognition approaches try to

everage the availability of multiple images of the same face in

 video, often at different poses and under different illumination

onditions. 

Taking advantage of the presence of multiple frames showing

he same face in a video does, however, come with its own chal-

enges — overcoming the problems caused by sudden pose and il-

umination changes. A well-known approach to solving these prob-

ems consists of recording training videos of the human subjects in

rbitrary motions and, subsequently, using the frames of the train-

ng videos as a gallery of images for each subject in the database.

t test time, a query video recording is compared with all of the

allery images in the database. Generally, each frame of the query

ideo is compared with all the gallery images for estimating a

atching score for the query video ( Chai et al., 2007 ; Howell and

uxton, 1996 ; Pentland et al., 1994; Shakhnarovich et al., 2002 ). 

Instead of performing face recognition with a frame-by-frame

omparison of the training and the test data, it is also possible to

reat a video as a temporal stream in the three dimensional space

ormed by two spatial and one temporal coordinates. One can an-

lyze this 3D space holistically to extract information that charac-

erizes the dynamic properties of a face. Zhou et al. (2003) pio-

eered this kind of work by tracking human subjects in videos and

xtracting their faces to construct priors for the different views

f the different faces. Lee et al. (2003) focused on automatically

earning the transition probabilities between the different possible

ppearances of a face in a video. Along the same lines, Liu and

hen (2003) used a Hidden Markov Model (HMM) for modeling

he face appearance along with the head pose changes in the train-

ng videos for each human subject. 

Another class of methods, known as the ensemble approach,

ocuses on the fact that a query video, when treated as a

tream of temporal information, may not correspond to any of

he gallery videos recorded previously for all of the human sub-

ects ( Arandjelovic et al., 2005; Fan and Yeung, 2006; Hamm and

ee, 2008; Kim et al., 2007; Shakhnarovich et al., 2002; Yamaguchi

t al., 1998; Zhou and Chellappa, 2006 ). In order to deal with this

roblem at test time, a frame-by-frame comparison between the

uery video and the gallery videos is carried out to create vir-

ual gallery videos for each human subject using the gallery video

rames that are most similar to the query video frames. Subse-

uently, face recognition is based on comparing the query video

ith the virtual gallery videos for the different human subjects. 
m single RGBD models of the faces, Computer Vision and Image 
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2.2. Multi-camera and multi-view face recognition — recognizing 

faces in the wild 

Superficially it may seem that there should be no difference

between multi-camera (or multi-view) face recognition and video

face recognition. As it turns out, the two are very different prob-

lems because, with video, the variations in the viewpoints are

bound to be localized to where the camera happens to be with

respect to the human subject. On the other hand, when you have

multiple cameras viewing the same subject, the cameras could

be mounted at spatially dispersed locations that make for large

variations in viewpoints vis-a-vis the subject. One typical exam-

ple would be the cameras in an airport terminal that are tracking

the same human subject with the goal of identifying the individual

from the snippets of images recorded by the cameras. The multi-

camera face recognition research can be divided into the following

two categories: when a face to be recognized is in the intersection

of the fields of view of all the cameras, and when that is not the

case. We briefly discuss both cases below. 

For the case of multi-camera face recognition when a face is in

the intersection of the fields of view of all the cameras, most works

focus on choosing the view that provides the most reliable evi-

dence for recognizing a face and subsequently using a traditional

approach for carrying out the recognition task ( Pnevmatikakis and

Polymenakos, 2007; Xie et al., 20 06; 20 07 ). In Xie et al. (20 07) ,

for example, the reliability of each camera depends on how well

both face detection and recognition can be carried out with the

image captured by that camera. Alternatively, subspace learning

methods can be used to compare the pose of a face as seen in

a camera view, with the pose information needed for aggregating

the multi-camera data. Li et al. (2005) proposed one of the first

approaches for clustering faces into subspaces according to their

poses. Their method is based on a supervised version of Indepen-

dent Subspace Analysis (s-ISA). Although their experiments indi-

cate that s-ICA provides better face pose classification than Prin-

cipal Component Analysis (PCA), Independent Component Analy-

sis (ICA), and Topographic Independent Component Analysis (TICA),

their results are largely qualitative. Kan et al. (2012) proposed a

method that finds optimal linear transformations to map images

from different views (or different sensing modalities) into a com-

mon subspace. Their approach shows performance improvement

over previous linear subspace learning approaches such as the one

presented by Sharma et al. (2012) , but their multi-view classifica-

tion evaluation is restricted to the viewpoint range [ −45 ◦, +45 ◦] in

azimuth. Note also that manifold learning approaches have been

shown to be more robust and have better generalization capabili-

ties than linear methods such as ISA (Lu et al., 2013 ; Tenenbaum

et al., 20 0 0 ; Zaki and Yin, 2015) . Furthermore, none of the meth-

ods mentioned above is concerned with the problem of incorporat-

ing multiple query images recorded from different viewpoints in a

classification algorithm. 

While not directly applicable to the multi-camera face recog-

nition problem, another related non-linear subspace learning ap-

proach was proposed by Goudelis et al. (2007) . In that work,

the authors proposed a face verification (i.e., binary recognition)

method that employs a kernelized discriminant for maximizing

the impostor distance measures while minimizing the client (i.e.,

non-impostor) distance measure. Their method showed impressive

single-digit equal error rates (EER) for several challenging datasets

with varying face poses. 

When there is no overlap between the fields of view of the

cameras involved, person re-identification becomes a fundamental

issue in multi-camera face recognition ( B ̨ak et al., 2012; Bedagkar-

Gala and Shah, 2014; Cai et al., 2008; Gong et al., 2014; Mazzon

et al., 2012; de Oliveira and de Souza Pio, 2009; Satta et al., 2012;

Zhu et al., 2014 ). The notion of re-identification addresses the fol-
Please cite this article as: D. Kim et al., Multi-view face recognition fro

Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.04.008 
owing issue related to face recognition in the wild: If a group

f people is being tracked by a network of non-overlapping cam-

ras, how can we ensure that the face fragments extracted from

wo different cameras belong to the same individual? Person re-

dentification is a complex problem on its own and is currently

 subject of active research. It is, however, beyond the scope of

he work reported in this paper. Obviously, after collecting the face

ragments for each individual, there remains the problem of ag-

regating the evidence and attempting final face recognition. This

vidence aggregation is the main problem addressed in this paper.

Regarding previous contributions to such evidence aggregation,

n et al. (2012) aggregate the information from different cameras

ith the help of a dynamic Bayesian network that contains a node

or each camera and a node for each human subject that the sys-

em is expected to recognize. At training time, the structure of the

etwork and its parameters are learned with person-specific dy-

amics from the gallery videos. At test time, faces are recognized

y maximizing the posterior probabilities derived from the cam-

ra and the human subject nodes. Du et al. (2014) aggregate evi-

ence in multi-camera scenarios by tracking a human head from

amera to camera. The head model used in this work is a texture-

apped sphere that is represented by spherical harmonics. Recog-

ition is carried out by comparing the head model coefficients of

he training images with those that apply to a test subject. An-

ther approach that tracks a head and then associates a pose with

t was proposed by Harguess et al. (2009) . In this approach, at

raining time, all frontal images obtained from multiple cameras

re used for building a generic cylinder head model and a lower

imensional subspace. At test time, the pose of the head is esti-

ated through the cylinder head model that is constructed during

he training process. This pose is used to weight the reliability of

 partial view of a query face assuming that the reliability goes

own as the query viewpoint moves away from the frontal view. 

. View-partitioned subspaces for multi-subject face data 

As stated above, the main problem that this paper investigates

s that of face recognition from a set of partial views as recorded

rom a set of randomly chosen viewpoints around the face. In or-

er to discriminate between the faces of different individuals, we

se a vector representation for the images so that each image is re-

arded as a point in a high D -dimensional space. In order to cope

ith the curse of dimensionality, we want to create lower dimen-

ional representations of the faces, but do so in such a way that

he discriminatory information between the faces is not lost. As

s now well known, face data collected from different viewpoints

s likely to reside on a manifold and any dimensionality reduc-

ion approach must take into account the structure of the mani-

old — in both the original measurement space and in the target

ow-dimensional space. So the first research issue faced is how to

est represent the training data for the different human subjects

n a manifold-based low-dimensional representation. We address

his issue by creating multiple view-partitioned subspaces. By view

artitioning we mean simply dividing the view sphere according to

ome criterion. 

The goal of the present section is to introduce two criteria for

artitioning the training data for subspace construction. The first

s based on the pose parameters associated with the training im-

ges and the second is based on the similarity of appearance be-

ween the training images. We have previously used both of these

pproaches for solving the simpler problem of head pose estima-

ion ( Kim et al., 2013 ). Our conclusion in that study was that, for

he purpose of pose estimation, the appearance based partitioning

ethod produced better results than the pose based partitioning

ethod. For the purpose of face recognition, we must now also

actor in the person-to-person image variations. In this context, for
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 1. Variations on the classifiers for face recognition with view-partitioned sub- 

spaces for multi-subject and multi-view face recognition scenarios. 
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Fig. 2. The sequence of steps for generating a pose-transformed version of a frontal 

RGBD image: (a) the original RGBD image for the frontal pose (the RGB data is 

shown on the left and the depth is shown on the right); (b) the pose transformed 

and projected result from the data in (a); (c) the 2.5D interpolated result. 

Fig. 3. Examples of the generated training images for one subject. 
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ach partition of the training dataset, we can either construct a

ingle subspace for all the individuals in the database, or we can

reate person-specific subspaces. Fig. 1 illustrates these variations

n the pose-based and the appearance-based subspace construc-

ion techniques. We will discuss each of the boxes in Fig. 1 in de-

ail later in this section. 

Before focusing on the issue of how best to construct the sub-

paces, we are faced with the serious challenge of collecting a large

umber of viewpoint variant images of the faces of different indi-

iduals for training purposes. In this paper, we have solved this

roblem by recording a single frontal RGBD image for each indi-

idual in the database and then synthetically generating all the

eeded viewpoint variant images from the recorded RGBD image.

n the next section we briefly discuss this process. 

.1. Creating viewpoint-variant face images from a single frontal 

GBD scan of a human subject 

As we have previously described in Kim et al. (2013) , the 3D

osition ( X, Y, Z ) associated with an RGBD “pixel” at the raster co-

rdinates ( x, y ) is given by: 

 = 

Z D 
f c 

(x − u x ) , Y = −Z D 
f c 

(y − u y ) , Z = Z D , (1)

here Z D is the depth value recorded by the sensor, f c is the fo-

al length, and u x and u y are the center coordinates of the image

lane. Given the 3D points obtained in this manner, we first re-

ove the background by thresholding the point cloud according to

ts depth histogram using Otsu’s algorithm ( Otsu, 1975 ). The fore-

round, i.e., the set of points with Z coordinate lower than Otsu’s

hreshold, corresponds to the 3D points on the surface of a face

 Fig. 2 (a)). 

The resulting 3D point cloud model is simply a collection of 9-

imensional vectors of the form M = [ x 2 D , Z D , X 3 D , V RGB ] 
T , where

 2 D represents the ( x , y) pixel positions, Z D the depth values, X 3 D 

he three spatial coordinates of the corresponding object points,

nd V RGB the three color values recorded at the pixels. This cloud

odel includes the 2D pixel coordinates, the 3D coordinates of the

orresponding object point, as well as the texture data in the form

f RGB values at the object point. Given a single RGBD image of

he frontal pose, we generate T training images by first applying

 pose transformations to its point cloud, and then projecting the

esulting point clouds back into the camera image plane. The com-
Please cite this article as: D. Kim et al., Multi-view face recognition fro
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utation that generates a virtual view image I t is described by 

 t = T 
(

K [ I | 0 

T ] G (p ) X 3 D 

)
, (2) 

here K is the intrinsic camera calibration matrix, T (·) stands for

he conversion from the vectorized image with RGB values to the

D image on the camera image plane, and G ( ·) is the 3D transfor-

ation involving the translation parameters t = [ t x t y t z ] 
T and

he Euler rotation matrix R computed from the rotation parameters

= [ θrx θry θrz ] 
T as shown below: 

 (p ) = 

[
R t 

0 

T 1 

]
, (3) 

here p = [ θrx θry θrz t x t y t z ] is the pose parameter

ector. 

Generating 2D images projected from rotated 3D points has two

eneral problems to be considered. First, after a pose transform is

pplied, it is possible for multiple 3D points in the point cloud to

roject to the same pixel in the camera image plane. To get around

his problem, only the closest sample to the camera is projected

nto the camera image plane. Second, when a pose-transformed

oint cloud is projected into the camera image plane, one can end

p with “holes” in the projected image on account of the variable

epth resolution of the RGBD sensor. An example of this effect is

hown in Fig. 2 (b), which illustrates a pose-transformed version of

he frontal RGBD image in Fig. 2 (a). We eliminate such holes by ap-

lying bilinear interpolation to the neighboring points in the image

lane using the constraint that the points used for bilinear inter-

olation possess roughly the same depth values. Fig. 2 (c) shows

 projection when such interpolation is a part of the projection

perator. Fig. 3 shows additional examples of the training images

enerated according to this process. 

.2. Applying ISOMAP for clustering multi-subject face images 

When face images are viewed from different directions, the im-

ge data falls on a low-dimensional manifold in a high-dimensional

easurement space ( Okada and von der Malsburg, 2002; Seung

nd Lee, 20 0 0; Wu and Souvenir, 2015 ). This fact is responsi-

le for much interest in topics such as manifold-based learning

nd data clustering ( Fukunaga and Olsen, 1971; Ghahramani et al.,

996; Kambhatla and Leen, 1997; Roweis and Saul, 20 0 0; Saul and

oweis, 2003; Tenenbaum et al., 20 0 0; Verbeek, 20 06 ). Much of

his work is based on the intuition that if we could first create
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 4. Visualization of the manifolds corresponding to three subjects as obtained by ISOMAP: (a) Three subjects, (b) Visualization of person-specific manifold structure in 

the PCA space, (c) Mean manifold for the person-specific manifolds in (b). 
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an appropriate low-dimensional representation for the underlying

manifold, that would simplify the logic needed for establishing the

decision boundaries required for the classification of the data. 

We have previously investigated three of the main methods

that exist today for understanding the data on manifolds, namely:

1) Locally Linear Embedding (LLE) ( Roweis and Saul, 20 0 0 ); 2)

ISOMAP ( Tenenbaum et al., 20 0 0 ); and 3) Representations that can

be obtained by the Kambhatla and Leen algorithm ( Kambhatla and

Leen, 1997 ). Our study concluded that ISOMAP gives us the best

partitioning of the data that minimizes the average reconstruction

error in the subspaces in each of the view partitions of the data

( Kim, 2015 ). The goal in this section is to demonstrate the cluster-

ing that is achieved when ISOMAP is applied to the multi-subject

face images. 

As described in the previous section, we record a single frontal

RGBD scan for each human subject and then create viewpoint de-

pendent training images from the scan by applying a set of ap-

propriate projection transforms to the scan. The clustering results

we show in this section are obtained on the image data collected

in this manner. These results are based on the training images

collected from the RGBD scans for the three subjects shown in

Fig. 4 (a). 

The manifold structure shown in Fig. 4 (b) for each of the three

subjects in Fig. 4 (a) is in the space spanned by the three leading

eigenvectors when all of the data for all three subjects is subject to

a PCA based dimensionality reduction. Each subject-specific mani-

fold in this figure is illustrated with a different color that matches

the color of the border for the corresponding human subject in

Fig. 4 (a). As the reader can see, all three manifolds look similar

globally. However, when the manifolds are examined more care-

fully by focusing on the local curvatures, one can see the differ-

ences between the three that are caused by the different facial fea-

tures, eyewear, etc. Shown in Fig. 4 (c) is the mean manifold for

the three subjects. The mean manifold is obtained by averaging

the three principal coordinates in the 3D PCA space on the basis

of the identity of the pose labels associated with the images. Note

that Fig. 4 (a)–(c) are just for human visualization of the structure

of the image data for the three human subjects. 

With regard to the dimensionality reduction of this face data

using ISOMAP, the extent to which the algorithm can capture both

the global shape variations in the manifolds shown in Fig. 4 (b) and,

at the same time, retain the local shape characteristics, depends on

the parameter γ , which controls the size of the immediate neigh-

borhood of a data point that ISOMAP uses for calculating point-to-

point geodesic distances. Fig. 5 (a)–(c) show how the ISOMAP rep-

resentation calculated from the original data changes as we vary

γ . What the ISOMAP algorithm accomplishes can be thought of as

the unfolding of the manifold. Since small values of γ will cause

geodesic distances to become more sensitive to local shape varia-

tions in the manifold, it is not surprising that the “unfolded man-

ifolds” returned by ISOMAP for γ = 6 look like what is shown in
Please cite this article as: D. Kim et al., Multi-view face recognition fro
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ig. 5 (a). As this parameter becomes larger and larger, the sensitiv-

ty to small shape variations disappears and what emerges is the

verall global shape as seen in Fig. 5 (c). This implies that small

alues of γ are to be preferred since the class discriminatory in-

ormation between the different human subjects is likely to reside

rimarily in the local variations on the manifold. When we apply

he KMeans algorithm to the ISOMAP representation with clus-

ers K = 9 , the corresponding appearance-based clustering results

hat we get are as shown in Fig. 5 for the three different values

f γ . 

We now show that appearance-based clustering of the multi-

ubject data represented by the results in Fig. 5 does NOT yield a

sable partitioning of the view sphere. Shown in Fig. 6 is a random

ampling of the images in each of the clusters in Fig. 5 . What is

ven more important with regard to the results shown in Fig. 6 are

he triple of data entries, with each entry of the form SI : X where

I is one of { S1 , S2 , S3 } and where X is an integer. The three entries

 

S1 , S2 , S3 } stand for “Subject 1,” “Subject 2,” and “Subject 3,” re-

pectively, these being the three subjects arranged left-to-right in

ig. 4 (a). The integer X in SI : X stands for the number of images

or the subject SI in the cluster. Given this notation, out of 9 clus-

ers, we have 5 clusters that consist exclusively of images for the

ame subject. Additionally, in the remaining 4 clusters, we have ex-

ctly 2 subjects represented. There does not exist a single cluster

hat contains images from all three subjects. It is therefore evident

hat the sort of viewspace partitioning we achieve automatically

ith such clustering does not correspond to an even distribution

f the different face poses for the three subjects. As shown in Kim

2015) , however, this algorithm does typically give us good views-

ace partitioning of the images as long as they belong to a single

uman subject . We will take advantage of this fact later in this pa-

er when we consider person-specific appearance-based partition-

ng of the manifold data for constructing a set of locally optimal

ubspaces for each subject. 

What works best for the case when multi-subject images are

onsidered together is pose based partitioning of the viewspace ,

hich is accomplished trivially since the training images generated

rom the RGBD data are tagged with the face poses. Fig. 7 (a) illus-

rates nine partitions that are manually delineated in the pitch and

aw space. Shown in Fig. 7 (b) is a visualization of all the images

n the space spanned by the three leading eigenvectors extracted

ith PCA from all of the images. Fig. 7 (c) shows the partitioning

pplied to the mean of the images of the three human subjects,

he means being computed for the same pose parameters. 

In the next subsection, we discuss locally optimum subspace

onstruction for the individual clusters in the data on the mani-

old. However, before launching into the material presented next ,

e must first point out that there has been much research in the

ast in fitting locally linear subspaces to data that resides on non-

inear manifolds ( Hu and Huang, 2008; Lee et al., 2003; Morency

t al., 2008; Pentland et al., 1994 ). 
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Fig. 5. Top row: ISOMAP-based representation of multi-subject face images with (a) γ = 6 , (b) γ = 10 , (c) γ = 27 . Bottom row: Clustering results using KMeans applied to 

the ISOMAP representation with (d) γ = 6 , (e) γ = 10 , and (f) γ = 27 . The parameter γ controls the size of the immediate neighborhood of a data point that ISOMAP uses 

for calculating point-to-point geodesic distances. 

Fig. 6. Clustered image samples that correspond to the result shown in Fig. 5 (d) with K = 9 and γ = 6 for the three subjects in Fig. 4 (a). 
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.3. Constructing subspaces from view-partioned clusters 

Before we can construct optimal subspaces for the individual

lusters on the manifold, we need to decide how to handle the

erson-to-person variations in the training data. That is, we need
Please cite this article as: D. Kim et al., Multi-view face recognition fro
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o choose whether the multi-subject data should be represented

hrough common view subspaces as at node 2 in Fig. 1 , or through

 finer person-specific decomposition as at nodes 5 and 9. For

he common-view case, each pose-partitioned subspace contains

raining data from all the subjects. For the case of person-specific
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 7. Visualization of pose-based clustering for K = 9 the three subjects shown in Fig. 4 (a): (a) Manual pose partition in the pitch and yaw space, (b) Partitioned subject- 

specific manifolds in the PCA space, (c) A partitioned mean manifold in the PCA space. 
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subspaces, the pose-partitioned subspaces are made specific to

each individual subject. In addition to pose partitioning, we con-

sider appearance-based partitioning for the case of person-specific

subspaces. 

Recent literature in face recognition suggests that we are likely

to achieve higher recognition accuracies if we construct person-

specific subspaces ( Belhumeur et al., 1997; Lee et al., 2003; Lee

and Kriegman, 2005; Luo et al., 2007; Sivic et al., 2009; Wang

et al., 2012 ). The reason has to do with the fact that the fine de-

tails on the manifold structure for each individual subject are likely

to get lost in a low-dimensional subspace that integrates over all

of the data for all the training subjects. One can argue that if an

attempt was made to retain the manifold structure corresponding

to each human subject in the low-dimensional space constructed

using PCA — as would be the case in person-specific subspaces —

one would get better results no matter what classification rule is

used for face recognition. 

In light of the merits of the person-specific subspaces as stated

in the literature, but keeping in mind that not enough is known

about what strategies might work the best for face recognition in

the wild, we keep both options open. That is, this work evaluates

both the Common View Subspace (CVS) construction and what we

refer to as Person Specific Subspaces (PSS). 

3.3.1. Common view subspace and person specific subspace models 

The CVS model in our investigation is for the pose-based par-

titioning criterion as shown at node 3 of Fig. 1 (as demonstrated

by the clustering results shown in Fig. 6 in Section 3.2 , partition-

ing the viewspace for the global case based on subject appearance

does not provide a useful representation). We call this model Pose-

CVS; it is created by first pose-partitioning the view sphere and

then placing the relevant training images for all the subjects in a

common subspace for each partition. As a result, the CVS model

consists of multiple PCA subspaces, one for each pose partition,

and the principal components of the training samples in each sub-

space. Here, each training sample is labeled with the index of a

human subject. Accordingly, for a given number of views K and the

total number of human subjects H (elsewhere in this paper, espe-

cially in Fig. 1 , we have used the symbol N for the total number of

human subjects in the training data), the CVS model is represented

by 

Model CV S = 

{ {
S (k ) , Y 

(k ) 
h 

}K 

k =1 

} H 

h =1 
, (4)

= { L cv s,h } H , (5)
h =1 

Please cite this article as: D. Kim et al., Multi-view face recognition fro
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here L cv s,h = 

{ 
S (k ) , Y 

(k ) 
h 

} K 
k =1 

. In this representation, the k th cluster-

ased subspace is given by S (k ) = < r (k ) , U 

(k ) , �(k ) 
> where r ( k ) is

he center of the k-th cluster, U 

( k ) the eigenvector matrix, and �( k ) 

he eigenvalues matrix. Additionally, Y 

(k ) 
h 

denotes the set of train-

ng samples for the h th human subject projected into the subspace

or the k th cluster. Here, we can also interpret Y 

(k ) 
h 

as the set of

oints of the h th subject on the hyperplane represented by S ( k ) . 

Again, as shown in Fig. 1 , the person-specific subspaces can be

onstructed for either pose-based partitioning of the view sphere

r appearance-based partitioning (nodes 6 and 10, respectively).

hen the view sphere is partitioned directly in the pose space,

s at node 1, the person-specific subspaces are constructed by fit-

ing a PCA model to all the training images for each human sub-

ect in each pose partition separately. We call this approach Pose-

SS. On the other hand, at nodes 7 and 8, we first partition all the

raining images on the basis of their human identity and carry out

ppearance-based clustering of the images for each human subject

sing ISOMAP followed by KMeans clustering (see Kim, 2015 for

ore details). This approach is called App-PSS. Consequently, both

SS models can be expressed in the following form: 

odel PSS = 

{ {
S (k ) 

h 
, Y 

(k ) 
h 

}K 

k =1 

} H 

h =1 
, (6)

= 

{
L pss,h 

}H 

h =1 
, (7)

here K is the number of clusters formed for each human subject

based on pose or appearance), and H denotes the number of hu-

an subjects (recall from the earlier note in this section that the

ymbol N is synonymous with the symbol H in this paper). The

 th cluster-based subspace for the h th subject is represented by

 

(k ) 
h 

= < r (k ) 
h 

, U 

(k ) 
h 

, �(k ) 
h 

> where r (k ) 
h 

is the center of the k th cluster,

 

(k ) 
h 

the eigenvector matrix, and the eigenvalues matrix �(k ) 
h 

. Also,

 

(k ) 
h 

is the set of points for the h th human subject on the hyper-

lane represented by S (k ) 
h 

. 

.3.2. Overall classification logic for a test image 

When we use the above subspace models to classify a query

mage, we employ a nearest-subspace (NS) classifier that chooses a

ubspace in terms of the smallest reconstruction error. The recon-

truction error calculates the orthogonal distance from a query to

he hyperplane obtained by PCA. Fig. 8 illustrates the reconstruc-

ion error distance from a query image point q to two hyperplanes

 

(1) and S (2) in the underlying R D space. The reconstruction error
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 8. Geometric interpretation of the reconstruction error distance for two sub- 

spaces S (1) and S (2) in R D . 
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istance is given by: 

d 
(
q , S ( k ) 

)
= ‖ F 

( k ) T (
q − r ( k ) 

)‖ 

2 
, 

(8) 

here U 

(k ) = 

[
F (k ) F̄ (k ) 

]
is the matrix whose columns are the

igenvectors of the covariance matrix obtained from the samples

n the k th subspace. F ( k ) consists of the d leading eigenvectors and
¯
 

(k ) consists of the (n − d) trailing eigenvectors of U 

( k ) whose rank

s represented by n . 

Referring back to Fig. (1) , App-PSS and Pose-PSS return the face

dentity using only the NS classifier. On the other hand, Pose-CVS

equires two-layered classifiers in order to determine the face la-

el. First we must select a subspace and then figure out the appli-

able face label in that subspace. We consider two different clas-

ifiers in the second layer of Pose-CVS: a nearest neighbor (NN)

lassifier and an SVM classifier ( Cortes and Vapnik, 1995; Vapnik,

963 ). 

Fig. 9 illustrates the classification logic for each of the models

e consider. Fig. 9 (a) shows the classification logic used for both

SS approaches. From the N × K subspaces available, the test im-

ge is assigned to that subspace for which the reconstruction error

istance is the smallest. This directly yields the person ID for the

est images since each subspace is person specific. In other words,

or the PSS model Model PSS , given a query q , recognizing a face is

imply achieved by the nearest subspace classifier as 

 

∗ = arg min 

h 
d(q , S (k ) 

h 
) , (9)

here d(q , S (k ) 
h 

) denotes the reconstruction distance from a point

 to the k th hyperplane of the h th subject. 

Fig. 9 (b) and (c) show how to work with two-layered classi-

ers for the Pose-CVS model. The classifier in the first layer of this

odel is similar to that used for the PSS models. For a query im-

ge q , we first find the best subspace to use by minimizing the

econstruction distance as 

j = arg min 

k 
d 
(
q , S ( k ) 

)
, k=1, · · · ,K. (10) 

s for the second layer classifier, Fig. 9 (b) shows the NN classifier

nd (c) depicts the SVM classifier where LSVM and RKSVM stand

or linear SVM and radial basis function (RBF) kernel SVM, respec-

ively. 

For the NN classifier, let the training samples x 
( j) 
i 

in the j th sub-

pace have their local-subspace representations given by the vec-

ors y 
( j) 
i 

= F ( j) T (x 
( j) 
i 

− r ( j) ) for y 
( j) 
i 

∈ Y 

( j) 
h 

and i = 1 , · · · , T j where

 j is the number of samples in the j th subspace. Subsequently, we

earch in the local subspace for that training image which is clos-

st to the query image q . That is, we find 

 

∗ = arg min 

i 
‖ y ( 

j ) 
i 

− F ( j ) T 
(
q − r ( j ) 

)‖ 

2 
, i = 1 , · · · , T j . (11) 
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he person label returned for the query image q is the label h as-

ociated with the nearest training sample image represented in the

ocal subspace by the vector y 
( j) 
l ∗ . 

For the SVM classifier, the person label is returned by the

VM classifier trained with the local-subspace representation of

he training samples x 
( j) 
i 

in the j th subspace. During the train-

ng procedure, the SVM classifiers associated with common-view

ubspaces are learned from the training samples projected in each

ubspace. Here, we consider two popular kernels: a linear kernel

 (x i , x j ) = x T 
i 

x j and a nonlinear kernel with radial basis function,

 (x i , x j ) = exp 

( 

−‖ x i −x j ‖ 2 
2 σ2 

) 

. In this paper, we utilize the multi-class

VM in Chang and Lin’s LibSVM ( Chang and Lin, 2011 ), which is

ased on the one-against-one approach in which we have one SVM

or each pair of classes ( Hsu and Lin, 2002 ). 

. Combining identity labels from multiple viewpoints 

This section addresses the question of combining identity labels

f face images recorded from a collection of viewpoints. Combin-

ng the identity labels for the global approach to face classifica-

ion, that is when all of the training data calculated from the RGBD

mages resides in a single low-dimensional subspace, is relatively

traightforward. The most commonly used approach in the litera-

ure for this purpose is that of majority voting. That is the method

e use in this section for the global approaches. 

On the other hand, the view-partitioned subspaces open up

he possibility of integrating the labels by giving greater weight

o query images that can be associated with viewpoints that carry

reater discriminatory power for determining the identity of a face.

t should be intuitively obvious that frontal and near-frontal view-

oints carry greater discriminatory power than the other view-

oints. That then provides us with motivation for investigating a

eighted voting approach to combine identity labels generated by

iew-partitioned subspaces. 

For the case of view-partitioned subspaces, Fig. 10 is a visual

epresentation of our overall framework for training and testing

he system for recognizing a face from a set of query images. The

abels I 1 , I 2 , ... , I N in the top box in the figure represent the N dif-

erent subjects in the population on which the system is trained.

e assume we have access to a single frontal RGBD image for

he face of each subject. As explained in Section 3.1 , we generate

rom each RGBD image a set of 2D images of the face as would

e seen from a large number of different viewpoints. These images

re then partitioned into K clusters on the basis of either pose-

ased partitioning or appearance-based partitioning. Subsequently, 

e construct a subspace for each partition of the training images

hus created. 

For the testing phase, as shown below the dotted line in Fig. 10 ,

e are given M query images of the same individual, q 1 , ���, q M 

.

s to how these images are processed depends on whether we use

he common view-partitioned subspaces where each subspace rep-

esents the data from all of the subjects ( Model CVS ) or the person-

pecific view-partitioned subspaces in which each subject in the

opulation gets his/her own view-partitioned subspace ( Model PSS ).

he specific classifiers for each model were described in the previ-

us section. 

In either case, the output of this step for each query image is

n identity label. In general, we may associate a weight w i with

he identity label estimated for the i th query image and then con-

truct a weighted aggregation of the identity labels for the final

ecognition label. The weights reflect the degree of trust we place

n a given query image. When the final identity label is calculated

ith simple majority voting, the weights w all become 1. 
m single RGBD models of the faces, Computer Vision and Image 

http://dx.doi.org/10.1016/j.cviu.2017.04.008


10 D. Kim et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–19 

ARTICLE IN PRESS 

JID: YCVIU [m5G; May 1, 2017;13:53 ] 

Fig. 9. Classification logic for: (a) App-PSS and Pose-PSS, (b) Pose-CVS-NN, (c) Pose-CVS-LSVM and Pose-CVS-RKSVM. See Fig. 1 for what is meant by App-PSS, Pose-PSS, 

and Pose-CVS. The additional qualifiers used with Pose-CVS stand for the second-layer classification strategy used. The symbol H in the figure stands for the total number of 

human subjects in the training data (which is also represented by N in this paper). The symbol K stands for the total number of partitioned subspaces for CVS and for the 

total number of partitioned subspaces per person for PSS. 

Fig. 10. A weighted voting framework for multi-view inputs. 
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4.1. Weighted voting by normalized reconstruction error distance 

For the view-partitioned case, we consider the normalized re-

construction error distance as the weight to be assigned to a query

image. That is, if a query image q is assigned to a subspace S ( k ) (or

S (k ) 
h 

for the person-specific models), we compute the reconstruc-

tion error when q is projected into the subspace S ( k ) and normalize

it by the mean value of the error between q and all the subspaces

as we explain below. 1 The inverse of this error then becomes the

weight to be assigned to the classification label that is given to q

by the subspace S ( k ) . 

For the PSS model, the least reconstruction error distance for

the i th query q i is obtained by 

ε(q i ) = min 

h,k 

[
d(q i , S 

(k ) 
h 

) 
]
, (12)

where d(q , S (k ) 
h 

) denotes the reconstruction error distance of q to

the kth subspace of the h th person given by Eq. (8) (see Appendix

B in Kim, 2015 for more details). Similarly, for the CVS model, the

minimum reconstruction error distance for a query q is obtained

by 

ε(q i ) = min 

k 

[
d(q i , S 

(k ) ) 
]
. (13)
1 Note that, since we need to calculate the reconstruction error between q and 

all the subspaces anyway in order to figure out which subspace is best for q , no 

additional computations are involved in the normalization of the reconstruction er- 

rors. 
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hen, the normalized minimum distance is given by 

˜ 

 (q i ) = 

ε(q i ) 
1 

H·K 
∑ H 

h =1 

∑ K 
k =1 d(q i , S 

(k ) 
h 

) 
, (14)

or PSS, and 

˜ 

 (q i ) = 

ε(q i ) 
1 
K 

∑ K 
k =1 d(q i , S (k ) ) 

, (15)

or CVS. In Eqs. (14) and (15) , the symbol H stands for the to-

al number of human subjects in the training data. (Recall, from

ection 3.3.1 , this paper uses the symbols N and H synonymously.)

he weight for the i th query q i is determined in inverse proportion

o ˜ ε (q i ) as 

 (q i ) = 

1 ˜ ε (q i ) 
. (16)

To summarize, given a query image q , let the values for the

econstruction error between q and the subspaces S (1) , S (2) , . . . be

enoted , respectively ε 1 , ε 2 , . . . . For the purpose of class label cal-

ulation, we assign q to the subspace S ( i ) if εi < εj for all j � = i .

hen, to combine the classifications returned for all the query im-

ges, the class label calculated for q is weighted in inverse propor-

ion to εi (after normalization). 

. Results 

Our discussion so far has raised a number of important research

uestions that we now address with an extensive experimental

valuation. In particular, we focus on the following research ques-

ions: 1) Does viewspace partitioning improve the performance of

 classifier in comparison with that of the global approaches? 2)

hat is the effect of the number of such partitions on the clas-

ification performance? 3) Should viewspace partitioning be car-

ied out on the basis of face pose or face appearance? 4) What

s the impact of the dimensionality of the subspaces that repre-

ent the different partitions on the performance of the system? 5)

oes a classification system benefit from aggregating multiple im-

ges from different viewpoints? And if so 6) Does the proposed

eighted voting method further improve the system performance

n comparison with simple majority voting? 

In order to quantitatively assess the relative merits of the differ-

nt classification strategies, we use three RGBD datasets. The first

s the RVL face dataset consisting of 10 human subjects that we

reated. Some example images from the RVL dataset are shown in

igs. 11 and 13 . The second is a public dataset consisting of 28

ubjects from the Visual Analysis of People (VAP) lab at Aalborg
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 11. Frontal faces of the 10 human subjects in the RVL face dataset. 
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Fig. 12. We investigate the extent to which the different subspace models retain 

the class discriminatory information by measuring the accuracy with which individ- 

ual image samples are classified in a 10-fold cross-validation test. This figure shows 

accuracy vs. subspace dimensionality with respect to the number of partitions K 

for: (a) All models at K = 1 , (b) Pose-CVS-NN, (c) Pose-CVS-LSVM, (d) Pose-CVS- 

RKSVM, (e) App-PSS, and (f) Pose-PSS. In the Global NN, Linear SVM and Nonlinear 

SVM approaches, all the samples are placed in a common global space without di- 

mensionality reduction and classification is performed respectively with a nearest 

neighbor, linear SVM, and nonlinear SVM with an RBF kernel classifier. 

Fig. 13. These are the 17 purely 2D test images collected for one of the subjects in 

the RVL dataset. To the extent possible, the pose of the face is random with respect 

to the camera viewpoint. 
niversity ( Høg et al., 2012 ). We will refer to this dataset as the

AP dataset in the rest of this paper. The third dataset is the ETH

IWI Kinect Dataset ( Fanelli et al., 2011 ), another publicly avail-

ble dataset consisting of 20 distinct test subjects. Finally, we also

ompare our methods with the state-of-the-art face classification

pproach proposed by Parkhi et al. (2015) . 

.1. Comparison of the discriminative power of view-partitioned 

ubspaces 

The goal of this section is to measure the class discriminatory

nformation retained in the different subspace models by a 10-

old cross validation test. For the evaluation in this section, we

enerated 200 multi-view images for each of the 10 human sub-

ects from a single frontal RGBD image for each subject in the RVL

ataset, as described in Section 3.1 . Fig. 11 displays the frontal im-

ges of the 10 subjects. For 10-fold cross validation, we randomly

huffle the 200 images for each human subject. For each run of the

0-fold test, we use 180 of these for training and the remaining

0 for testing. (Compared to the 200 multi-view images generated

rom the RGBD model for each subject in this section, we generate

 much larger number of views — 925 — for the training required

or multi-view face recognition as reported in the next section.) 

During training, we generate three models: Pose-CVS, Pose-PSS,

nd App-PSS (see Fig. 1 ). As previously mentioned, the Pose-CVS

odel has three variants, Pose-CVS-NN, Pose-CVS-LSVM and Pose-

VS-RKSVM, each with a different second-layer classifier. For de-

ails regarding the classification logic in each model, see Fig. 9 and

he associated explanations. We investigate the discriminatory

ower of the subspaces in each model as we vary the number of

lusters (which is the same as the number of subspaces) K and

he dimensionality of the subspaces d . The baseline method is the

VM classifier with the RBF kernel and no viewspace partitioning

ecause this type of classifier has had a rich history of success in

he past. 

Fig. 12 shows the accuracy of each model with respect to the

imensionality d and the number of partitions K . In (a) of the fig-

re, a comparison of all models is presented with the baseline

hen there is no viewspace partitioning. As the reader can see, the

SS model is not only better than the linear SVM and the global

N models but is also comparable to the nonlinear SVM model.

or the Pose-CVS model, when we use the NN classifier, its per-

ormance approaches that of the global NN model as d increases.

hen we use the linear SVM and RBF kernel-based SVM, they

onverge to the baseline (although Pose-CVS-LSVM requires a sub-

tantially higher dimensionality than what is shown in the figure

n order to do so). In terms of the number of view-partitions, as

ig. 12 (b) – (f) show, as K increases, each of the models converges

o its maximum accuracy in a smaller dimensional subspace. The

ose-CVS-LSVM model, shown in Fig. 12 (c), for example, requires

 subspace dimensionality of around 200 (not shown in the fig-

re) to approach its saturated accuracy with K = 1 , but for K = 9 ,

t surpasses the global linear SVM with only d = 20 dimensions. 

.2. Results on the RVL face dataset 

Starting with this subsection, we present our multi-view face

ecognition results in this and the next two subsections. As stated

arlier in Section 5 , our overall evaluation of the classification

ramework presented in this paper is based on three different
Please cite this article as: D. Kim et al., Multi-view face recognition from single RGBD models of the faces, Computer Vision and Image 
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Fig. 14. Multi-view classification accuracy with a single non-partitioned subspace and majority voting as a function of the subspace dimensionality d and the number M of 

query images for the RVL dataset. (a) Results with a linear SVM classifier (CVS-LSVM), (b) Results with an RBF kernel based SVM classifier (CVS-RKSVM), and (c) a single 

subspace for each individual separately (PSS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Classification performance as a function of the number of query im- 

ages M for a single non-partitioned subspace with the dimensionality for the RVL 

dataset d = 20 . (a) Classification accuracies. (b) Time performance of the classifiers 

for the three cases in (a). 
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datasets. In this section, we show results on the home-brewed RVL

face dataset.We first demonstrate the application of the majority

voting rule to the case when we use a single subspace for rep-

resenting all of the training data (i.e., when K = 1 ). We then ex-

tend the majority voting approach to the case of view-partitioned

subspaces (i.e., K > 1) and compare the results obtained with

those of the non-partitioned approach. Finally, we consider the

case of weighted voting for view-partitioned subspaces in which

the weights depend upon the least reconstruction error distances. 

All of our results in this section are based on the training data

collected from the 10 human subjects whose 2D images are shown

in Fig. 11 . For each subject, we record a single frontal RGBD image

and from that image we generate 925 viewpoint variant images for

the subject. The viewpoint variant images cover an angular range

of [ −90 ◦, 90 ◦] in yaw and [ −60 ◦, 60 ◦] in pitch with respect to the

frontal view of the face in steps of 5 °. For the test data, we use a

separate set of face images recorded from different viewpoints. To

emphasize, the test data is NOT drawn from the RGBD based 2D

training images generated for each subject. We separately record

a set of 17 images for each subject with different orientations of

the face vis-à-vis the camera. Note that these are purely 2D im-

ages. No particular constraint is placed on the relationship of the

face pose to the location/orientation of the camera — except for

ensuring that the face is sufficiently visible in the camera images.

Shown in Fig. 13 are such test images for one of the subjects. 

5.2.1. Majority voting for a non-partitioned subspace 

This study is for the case when we place all of the training

data in a single non-partitioned subspace. Although the main focus

in this section is to show results with a single subspace, for the

sake of completeness we also show results with an extension of

the idea — we create person-specific subspaces but with NO view-

point partitioning. While the former corresponds to the CVS model

with K = 1 , the latter is equivalent to either of the PSS models also

with K = 1 . The results shown in this section demonstrate how the

classification error varies as we change the dimensionality d of the

single subspace and as we change the number M of query images

available. 

Fig. 14 shows the classification accuracy as a function of the di-

mensionality of the subspace. Each datapoint in Fig. 14 as well as

in the remainder of this section corresponds to the average over

100 independent realizations of the experiment, with each realiza-

tion consisting of query images drawn randomly from the testing

dataset. The accuracy results plotted in Fig. 14 indicate that the

classification accuracy decreases rapidly when the dimensionality

of the subspace is made larger than approximately 20. The most

significant result in Fig. 14 is that multi-view classification, that
Please cite this article as: D. Kim et al., Multi-view face recognition fro

Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.04.008 
s, when M is greater than 1, definitely contributes to increases in

verall classification accuracy. 

In order to examine the results plotted in Fig. 14 from a dif-

erent perspective, shown in Fig. 15 (a) are the same results for a

xed value of 20 for the subspace dimensionality and as a func-

ion of the number of views M . It is interesting to observe that,

hen the test images are drawn from a separate dataset, the PSS

pproach performs comparably to the nonlinear SVM for any num-

er of query images. Fig. 15 (b) shows the time performance of the

lassifiers for the same three cases as in (a). 

.2.2. Majority voting for view-partitioned subspaces 

This section presents the results obtained when the classifica-

ion results generated by multiple views are combined by a sim-

le majority voting approach in which the contributions from each

iew are equally weighted. 

Fig. 16 shows the multi-view classification accuracy as a func-

ion of dimensionality for the Pose-CVS model. In comparison with

he non-partitioned case, the accuracy does not fall off as rapidly

hen we increase the dimensionality beyond 20. Instead, we see

ess pronounced peaks at a dimensionality of approximately 50,

hich indicates that the dimensionality of the data is depen-

ent on the complexity of its subspace representation. The peak

s slightly more pronounced for the linear SVM, indicating that the

on-linear SVM is marginally more robust to the noise added by

he extra dimensions. On average, when the dimensionality d is

pproximately 50 and both methods show their peak performance,
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 16. Multi-view classification accuracy versus subspace dimensionality for the 

Pose-CVS model with K = 25 for the RVL dataset. (a) Linear SVM (Pose-CVS-LSVM). 

(b) Nonlinear SVM (Pose-CVS-RKSVM). 

Fig. 17. Multi-view classification accuracy versus the subspace dimensionality for 

the PSS model with K = 25 for the RVL dataset. (a) Appearance based clustering 

(App-PSS). (b) Pose based clustering (Pose-PSS). 
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Fig. 18. Classification performance as a function of the number of query images M 

with the dimensionality fixed at d = 20 and the number of view partitions fixed 

at K = 25 for the RVL dataset. (a) Classification accuracies. (b) Time performance of 

the classifiers in (a). 

Fig. 19. Comparison of the multi-view classification results for a single subspace 

with those obtained using view-partitioned subspaces for the RVL dataset. The plots 

in red are for the case when single non-partitioned subspaces are used and the 

plots in blue are for the case when view-partitioning is applied to the training data. 

The subspace dimensionality d is fixed as 20 for both the red and the blue plots. 

The value of K is 1 for the red plots (since they correspond to the case of a single 

global subspace) and 25 for the blue plots. (a) Classification accuracies. (b) Time 

performance of the classifiers in (a). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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he linear SVM performs about 5% better than the nonlinear SVM,

hich indicates that for properly modeled subspaces, the addi-

ional complexity of an RBF kernel is not justified. Fig. 17 shows

esults similar to those in Fig. 16 for the PSS model. As with the

VS model, here again the accuracy does not fall off as rapidly

hen we increase the dimensionality beyond 20. Instead we see

 peak at a dimensionality of approximately 30, which again in-

icates the dependence of the dimensionality on the model. The

eak is significantly more noticeable in the App-PSS model, which

ndicates that, similar to the Pose-CVS-LSVM, it is less robust to

oise at higher dimensionalities. 

Fig. 18 (a) shows how the classification accuracy depends on

he number M of query images for a fixed value of the subspace

imensionality d = 20 and view partitions K = 25 . For the RVL

ataset, the PSS models show marginally higher performance than

he CVS models with either a nonlinear or a linear kernel for seven

r more views. Shown in (b) of the same figure are the time per-

ormance comparisons for the four approaches shown in (a). As can

e seen from the plots in (b), CVS based classification with pose

artitioned subspaces gives the best time performance. 

Fig. 19 shows a comparison of the non-partitioned approaches

f Section 5.2.1 with the view-partitioned approaches of this sec-

ion. As is evident from this figure, the multi-view classifica-

ion approaches with view-partitioned subspaces tend to signifi-

antly outperform the non-partitioned subspace methods, partic-

larly when the number of views is greater than 5. Shown in

b) is a comparison of the time performance numbers associated

ith all cases in (a). This figure tells us that there is a cost as-

ociated with the superior classification accuracies one achieves
Please cite this article as: D. Kim et al., Multi-view face recognition fro

Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.04.008 
ith person-specific view-partitioned multi-view classification —

ncreased time to arrive at the results. As we increase the number

f views, the time it takes to arrive at a classification decision by

 person-specific view-partitioned classifier goes up linearly with

 . On the other hand, this time increases sub-linearly for both the

ommon-view view-partitioned classifier and the non-partitioned

lassifier. 

.2.3. Weighted voting for view-partitioned subspaces 

Fig. 20 (a) compares the classification accuracy obtained with

he weighted voting approach of Section 4.1 to that of simple ma-

ority voting. In this figure, blue lines correspond to weighted vot-

ng and red lines to majority voting. Weighted voting improves the

lassification accuracy for all models. For example, when M = 7 ,

eighted voting yields an overall accuracy about 14% higher than

ajority voting. Regarding computational time, Fig. 20 (b) shows a

omparison of weighted voting with the majority voting method.

he average time does not change much by calculating the weights

or each query. Therefore, weighted voting by normalized recon-

truction error distance improves the classification accuracy with-

ut additional computational cost when compared to majority

oting. 
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 20. Comparison of weighted voting with majority voting for the view- 

partitioned multi-view classification methods with d = 20 and K = 25 for the RVL 

dataset. Shown in (a) are the accuracy results and in (b) the average time taken by 

the classifier to return the result. The plots in red are for majority voting and the 

plots in blue are for weighted voting. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Examples of holes in the viewpoint variant training images for the publicly 

available VAP dataset. 

Fig. 22. Multi-view classification accuracy versus subspace dimensionality for the 

Pose-CVS model with K = 25 partitions for the VAP dataset. (a) Linear SVM (Pose- 

CVS-LSVM). (b) Nonlinear SVM (Pose-CVS-RKSVM). 
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5.3. Results on the VAP dataset 

In this section, we evaluate the various classification strategies

presented in our paper on the publicly available VAP database ( Høg

et al., 2012 ). This database has RGB images at a resolution of 1280

× 960 pixels and depth data at a resolution of 640 × 480 pixels for

31 subjects. For each subject, there are 17 different face poses. Note

that in this dataset, the authors use the term ‘face pose’ to refer

to both different face orientations vis-à-vis the sensor as well as

different facial expressions. For each subject, 14 poses correspond

to different orientations and 3 correspond to different expressions.

Each pose was recorded 3 times resulting in a total of 51 RGBD

images per person. More details about the dataset can be found in

Høg et al. (2012) . 

Two pre-processing steps are required to use this dataset for

evaluating our classification strategies. First, since the RGB images

and depth maps are not co-registered, simple downsampling of the

RGB images is not sufficient to align the two data sources. We

used the Microsoft Kinect SDK to co-register them. The second step

is face detection. The Haar feature based cascade classifier from

OpenCV was used to detect faces in the images. We rejected false

detections by using the observation that the position of the test

subjects does not vary much with respect to the sensor. 

Using the procedure described in Section 3.1 , we use one frontal

image to generate 925 viewpoint variant training images of each

subject. Regarding the testing dataset, our goal is to parallel the

test data in the RVL dataset to the maximum extent possible. Re-

call that the testing segment of the RVL dataset consists of 17 2D

images of the face of each subject taken from random orientations.

For the testing portion drawn from the VAP dataset, we select 17

2D shots randomly from the RGB data associated with the 51 RGBD

images for each subject. In making this selection we make sure

that no two of the 17 views are for the same pose of the subject.

Note that whereas the original dataset is for 31 subjects, we use

the data for 28 of them. 2 

It is interesting to note that this dataset suffers from stronger

shadow and occlusion effects when compared to our RVL face

dataset. Visualizing the point clouds in MeshLab showed that some

of the holes in the projected images are caused by the holes in the

point clouds and that the holes in the former persist notwithstand-
2 For the remaining three individuals, we were unable to automatically extract 

the faces for all views using a face detector. Instead of manually processing the 

missing views, we chose not to include these three individuals in this evaluation. 

t  

e  

s  

w  

c
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ng the application of the depth-constrained bilinear interpolation

escribed in Section 3.1 . Some examples to illustrate these artifacts

re shown in Fig. 21 . Such effects can impair the performance of

ny classifier. More robust 3-D surface reconstruction algorithms

re needed to fill these holes. This is a part of our ongoing re-

earch. Despite these challenges, our method still shows very high

ccuracy, as demonstrated in the following sections. 

.3.1. Majority voting 

We first show results using majority voting for view-partitioned

ubspaces. Adhering to the discussion in Section 5.2.2 , we use

 = 25 for the number of partitions. Fig. 22 depicts the classifica-

ion accuracy versus dimensionality for different numbers of query

mages for the Pose-CVS model. In the figure, as well as in the re-

ainder of this section, each datapoint corresponds to the average

ver 100 independent realizations of the experiment, with each re-

lization consisting of query images drawn randomly from the 2D

esting dataset. Again we notice that additional query images in-

rease the accuracy and that the peak accuracy is obtained at a

imensionality of 50, although less noticeably so for the RKSVM

odel. The performance difference between linear and non-linear

ernel SVMs is slightly less evident for this dataset. Fig. 23 illus-

rates the performance when we use the PSS models. Similarly, the

ependence on the dimensionality of the data is less noticeable for

he PSS models in this dataset. 

To illustrate the relative performances of the different classifiers

hile using majority voting, we fix the dimensionality d as 20 and

lot the accuracies for the non-partitioned and view-partitioned

lassifiers for different numbers of query images M in part (a) of

ig. 24 . Part (b) of the figure shows the corresponding time per-

ormances. As for the RVL dataset, view partitioning significantly

mproves the performance for the VAP dataset.. Also, we notice

hat the PSS approaches tend to outperform the CVS approaches

ven when a nonlinear kernel is used. This result is to be expected

ince the number of human subjects in this dataset is larger, which

ould make classification within a common subspace to be more

hallenging. 
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Fig. 23. Multi-view classification accuracy versus the subspace dimensionality for 

the PSS model with K = 25 partitions for the VAP dataset. (a) Appearance based 

clustering (App-PSS). (b) Pose based clustering (Pose-PSS). 

Fig. 24. Comparison of multi-view classification approaches when we use major- 

ity voting as a function of the number of query images M with the dimensionality 

d = 20 for the VAP dataset. The plots in red are for the case when single global 

subspaces are used and the plots in blue are for the case when view-partitioning 

is applied to the training data. The value of K is 1 for the red plots (since they 

correspond to the case of a single global subspace) and 25 for the blue plots. (a) 

Classification accuracies. (b) Time performance of the classifiers in (a). (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 25. Comparison of weighted voting with majority voting for the view- 

partitioned multi-view classification methods for the VAP dataset with d = 20 and 

K = 25 in terms of (a) accuracy and (b) average test time. The plots in red are for 

majority voting and the plots in blue are for weighted voting. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 26. Examples of viewpoint-variant training images for the BIWI dataset. 
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.3.2. Weighted voting 

We now use the weighted voting approach of Section 4.1 to

ombine the classification results from different views. The re-

ults are shown in Fig. 25 . For the VAP dataset, weighted voting

lso shows a performance improvement over majority voting. Also,

he PSS approaches outperform the CVS approaches in both voting

chemes. 

.4. Results on the BIWI dataset 

We also tested our framework on the publicly available BIWI

inect Dataset ( Fanelli et al., 2011 ). Although this dataset was orig-

nally created and used for head pose estimation in real time, it

an be used for our purposes as well. The dataset consists of a to-

al of 24 RGBD image sequences collected for 20 human subjects

ith the Microsoft Kinect sensor, implying that some of the sub-

ects were recorded more than once. Given that face recognition

s the main focus of our work, and that it is desirable to have

oughly the same amount of data for each subject, we chose to

eep 20 RGBD image sequences, one for each human subject.. This

ataset is different from and more challenging than the VAP and

VL datasets in a number of aspects. First, in the other datasets,

or generating the 2D images for testing purposes, the human sub-

ects looked at a fixed number of points on a wall so that the
Please cite this article as: D. Kim et al., Multi-view face recognition fro
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mages were recorded by the same Kinect sensor at roughly the

ame angles vis-a-vis the frontal face pose for each person. On the

ther hand, for the BIWI dataset, the test subjects sat in front of

he sensor and moved their heads randomly in different directions

n a continuous fashion while simultaneously changing facial ex-

ressions. Moreover, the calibration for the sensor can be different

or different subjects. The number of data frames in each of the 20

etained RGBD image sequences varies between 395 and 946. For

ach frame, we are provided with the RGB data as a PNG image

nd the depth data as a binary file. Both of these have dimensions

f 640 × 480 pixels. More details about this dataset can be found

n Fanelli et al. (2011) . 

Before testing our framework on this dataset, we needed to first

lign the depth images and the RGB images. Each RGBD recording

s provided with its own calibration information for the RGB sensor

nd the depth sensor, which we used to align the depth and the

orresponding RGB images. Specifically, for each pixel in the depth

mage, we used the calibration information of the depth sensor to

ackproject the depth value to a 3D point and then used the cal-

bration information of the RGB sensor to find the corresponding

olor values in the forward projection of that 3D point. After this

tep, we needed to detect faces in the images. The BIWI dataset

lso contains mask images that can be used to localize the faces in

he RGB projections. 

We used one frontal RGBD image for each human subject for

enerating the 925 viewpoint variant training images. All the re-

aining RGBD images in each sequence were used for extracting

he 2D test images needed for evaluating our algorithms. It is in-

eresting to note that the training data generated from the BIWI

ataset contains some of the same artifacts as the training data

enerated from the VAP dataset. Fig. 26 shows holes in the view-

oint variant images generated from the BIWI dataset after the ap-

lication of 2.5D interpolation. These artifacts can affect the accu-

acy of any classifier. Better calibration, surface reconstruction and

mage alignment strategies are possible solutions to address these
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 27. Multi-view classification accuracy versus subspace dimensionality for the 

Pose-CVS model with K = 25 partitions for the BIWI dataset. (a) Linear SVM (Pose- 

CVS-LSVM). (b) Nonlinear SVM (Pose-CVS-RKSVM). 

Fig. 28. Multi-view classification accuracy versus subspace dimensionality for the 

PSS model with K = 25 partitions for the BIWI dataset. (a) Appearance based clus- 

tering (App-PSS). (b) Pose based clustering (Pose-PSS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29. Comparison of multi-view classification approaches for the BIWI dataset 

when we use majority voting as a function of the number of query images M with 

the dimensionality d = 20 . The plots in red are for the case when single global sub- 

spaces are used and the plots in blue are for the case when view-partitioning is 

applied to the training data. The value of K is 1 for the red plots (since they corre- 

spond to the case of a single global subspace) and 25 for the blue plots. (a) Classi- 

fication accuracies. (b) Time performance of the classifiers in (a). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 30. Comparison of weighted voting with majority voting for the view- 

partitioned multi-view classification methods for the BIWI dataset with d = 20 and 

K = 25 in terms of (a) accuracy and (b) average test time. The plots in red are for 

majority voting and the plots in blue are for weighted voting. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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problems. As with the VAP dataset, nonetheless, we were able to

achieve high classification accuracies despite these difficulties, as

described in detail below. 

5.4.1. Majority voting 

We first show results with the majority voting scheme. In

Fig. 27 we show classification accuracy versus dimensionality for

the Pose-CVS model. We use K = 25 partitions. Similar to our ob-

servations for the RVL and VAP datasets, accuracy increases with

more query images. Corresponding plots for the PSS models are

shown in Fig. 28 . 

Fixing the dimensionality d at 20, we compare the accuracy

and time performance of the different models as a function of the

number of query images in Fig. 29 . Again, the view-partitioned

models perform better than the single subspace models and the

PSS models outperform the CVS models. Note that the performance

difference between App-PSS and Pose-PSS is more pronounced in

this dataset than in the VAP dataset. 

5.4.2. Weighted voting 

Fixing dimensionality d as 20, we compare the majority and

weighted voting schemes in Fig. 30 . As in the previous sections,

the weighted voting scheme clearly outperforms the majority vot-

ing scheme. In this dataset, however, CVS models tend to benefit

more from weighted voting than the view-partitioned approaches,

possibly due to the different calibration parameters used for the

different subjects as well as the large variability in the number

of image frames available for the different subjects. Both of these

would affect the value of the reconstruction error metric. 
Please cite this article as: D. Kim et al., Multi-view face recognition fro
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.5. Comparison with multi-view face recognition using a deep 

onvolutional neural network 

We now compare our algorithms with a state-of-the-art face

ecognition approach proposed by Parkhi et al. (2015) , which is

ased on the VGG deep convolutional network that was originally

rained on face images of 2622 different human subjects. For our

xperiments, we used the MatConvNet framework and an NVIDIA

esla K20 GPU. The training and testing procedures are briefly de-

cribed below. 

.5.1. Training and testing 

The viewpoint variant training images from all subjects (925

er subject) are normalized to zero mean and resized to 224 ×
24 × 3 as per the requirements of the VGG network. In order

o retrain the network for our purpose, we first removed the last

wo layers of the neural network. These correspond to the last

ully connected layer (denoted as ‘fc8’ in the literature) and the fi-

al softmax layer. Since the original VGG net was trained on 2622

lasses, its ‘fc8’ layer produces an equal number of outputs. We re-

laced this layer with a new ‘fc8’ layer that has as many outputs

s the number of classes (10 for the RVL dataset, 28 for the VAP

ataset, and 20 for the BIWI dataset). The weights in this new ‘fc8’
m single RGBD models of the faces, Computer Vision and Image 
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Fig. 31. Comparison of our proposed approaches with the deep-learning based face recognition system presented in Parkhi et al. (2015) for the (a) RVL dataset, (b) VAP 

dataset, and (c) BIWI dataset. 
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ayer were randomly initialized. The final softmax layer of the orig-

nal VGG net was also replaced with a new softmax layer for the

orrect number of classes. We retrained the neural network using

radient descent for 30 epochs. The 925 images per person were

andomly split into training (90% of the images) and validation sets

10%). We used the trained neural net to classify the test images.

imilar to the procedure used for our CVS and PSS approaches, we

valuated the performance of the deep learning approach by vary-

ng the number of query images. We used majority voting to com-

ine the classification labels from multiple views. 

.5.2. Results and comparison 

For presenting the results in this section, we denote the deep

earning classifier by VGG-NET. We fixed K = 25 and dimension

 = 20 for our approaches used in the comparison. In Fig. 31 we

ompare the classification performance of VGG-NET with that of

ur framework. We observe that for all three datasets our PSS ap-

roaches, when used with the weighted voting strategy, outper-

orm VGG-NET when the number of query images is larger than

. It is interesting to note that the CVS approaches also outperform

GG-NET when used in conjunction with majority voting for the

VL and the BIWI datasets. 

. Conclusion 

This paper answers the following question: To what extent can

ace recognition be carried out using images from multiple arbi-

rary viewpoints if each human subject in a population is repre-

ented by a single frontal RGBD image? No constraints are placed

n the orientation of the camera vis-à-vis that of the face, except,

f course, for the underlying assumption that a face can be seen

ith sufficient clarity from each viewpoint. 

Towards answering the question stated above, this paper started

ut by first investigating the issue of how to generate multi-view

raining data from the individual frontal RGBD images of the faces.

nce the training data was available, we then dealt with how to

est partition the multi-subject multi-view data for the construc-

ion of subspaces. Subsequently, we finally confronted our main

esearch problem — multi-view recognition from images collected

rom a random selection of viewpoints. We compared global meth-

ds with view-partitioned methods, and, for each case, we exper-

mented with common-view subspaces and person-specific sub-

paces. In the context of using view-partitioned subspaces, we

lso investigated the possibility of carrying out weighted voting in

hich each query image is given a different weight in the final

lassification depending on how accurately the query image can be

epresented in the subspace to which it is assigned. 
Please cite this article as: D. Kim et al., Multi-view face recognition fro
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Here are our three important conclusions: First, methods based

n view-partitioned subspaces showed superior performance rel-

tive to global subspace methods. Second, person-specific sub-

paces, when used in a majority voting framework, were signif-

cantly more effective than common-view subspaces, although in

ost cases common-view subspaces also provided highly satisfac-

ory results. Finally, weighted voting based on the normalized re-

onstruction error distance outperformed simple majority voting

or multi-view classification. In particular, the App-PSS approach

ith weighted voting proved more flexible and robust than the

ther methods with a maximal accuracy of approximately 95% in

ll three datasets. The Pose-PSS approach with weighted voting

erformed only slightly worse in most cases, except for the BIWI

ataset, in which case the CVS methods benefited substantially

rom the weighted voting scheme. The App-PSS approach outper-

ormed the state-of-the-art deep-learning based face recognition

ethod presented in Parkhi et al. (2015) by as much as 7% when

t least 7 views are available. 

With regard to future directions, perhaps the most important

oal would be to investigate the effect of noise and labeling errors

hen collecting 2D images of a face in a crowded environment.

his paper made a simplifying assumption that all the query im-

ges on which the final decision is to be based belong to the same

ndividual. That is highly unlikely to be the case in real life sce-

arios. Other issues that will certainly be present in a real-world

pplication of our algorithms and hence would need to be inves-

igated in the future are the effect of variable resolution query

mages (variability in the resolution caused by the cameras be-

ng at different distances from the human subject) and the pres-

nce of motion blur in the images. At the moment it is not clear

ow a large variability in photo resolution in the cameras or mod-

st amounts of motion blur would affect the final classification

utcome. Finally, another challenging issue for any face recogni-

ion method are appearance modifiers such as facial hair and eye-

lasses. Since such modifiers can be seen as different kinds of

artial occlusion, robust dimensionality reduction approaches such

s IGO-PCA ( Tzimiropoulos et al., 2012 ) which are specifically de-

igned to handle these kinds of scenarios could be employed to

lleviate this problem. Since our subspace construction methods

ecessarily involve a dimensionality reduction step, incorporating

uch robust algorithms should be relatively simple. 
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