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PART I

Clustering Data on a Nonlinear Manifold by
Minimization of Reconstruction Error
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1: Why Manifolds for Data Clustering and
Machine Learning?

� If you are new to machine learning and data clustering on linear

and nonlinear manifolds, your first question is likely to be:

What is a manifold?

� A manifold is a space that is locally Euclidean. And a space is

locally Euclidean if it allows for the points in a small

neighborhood to be represented by, say, Cartesian coordinates

and if the distances between the points in the neighborhood

are given by the Euclidean metric.

� For example, the set of ALL points on the surface of a sphere

does NOT constitute a Euclidean space. Nonetheless, if you

confined your attention to a small enough neighborhood around

a point, the space would seem to be locally Euclidean. [As you

know, the ancients believed that the earth was flat.]

� The surface of a sphere is a 2-dimensional manifold embedded

in a 3-dimensional space. A plane in a 3-dimensional space is

also a 2-dimensional manifold. You would think of the surface

of a sphere as a nonlinear manifold, whereas a plane would be
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a linear manifold.

� However, note that any nonlinear manifold is locally a linear

manifold. That is, given a sufficiently small neighborhood on a

nonlinear manifold, you can always think of it as a locally flat

surface.

� As to why we need machine learning and data clustering on

manifolds, there exist many important applications in which the

measured data resides on a nonlinear manifold.

� For example, when you record images of a human face from

different angles, all the image pixels taken together fall on a

low-dimensional surface in a high-dimensional measurement

space.

� The same is believed to be true for the satellite images of a land

mass that are recorded with the sun at different angles with

respect to the direction of the camera.

� Reducing the dimensionality of the sort of data mentioned

above is critical to the proper functioning of downstream

classification algorithms, and the most popular traditional

method for dimensionality reduction is the Principal

Components Analysis (PCA) algorithm.
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� However, using PCA is tantamount to passing a linear

least-squares hyperplane through the surface on which the data

actually resides.

� As to why that might be a bad thing to do, just imagine the

consequences of assuming that your data falls on a straight line

when, in reality, it falls on a strongly curving arc. [This is exactly what

happens with PCA — it gives you a linear manifold approximation to your data that may actually

reside on a curved surface.]

� In the rest of this section, I’ll provide a more phenomenological

explanation for why certain kinds of data gives rise to shaped

surfaces in the measurement space. Toward that end, consider

the two-pixel images formed as shown in the next figure. We

will assume that the object surface is Lambertian and that the

object is lighted with focused illumination as shown.
Orthographic
Projection
Camera

Direction of
Illumination

x
1 x

2
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� We will record a sequence of images as the object surface is

rotated vis-a-vis the illumination. We will assume that the pixel

x1 in each image is roughly a quarter of the width from the left

edge of each image and the pixel x2 about a quarter of the

width from the right edge.

� We will further assume that the sequence of images is taken with

the object rotated through all of 360 ◦ around the axis shown.

� Because of Lambertian reflection, the two pixels in an image

indexed i will be roughly as

(x1)i = A cos θi

(x2)i = B cos(θi + 45 ◦)

where θi is the angle between the surface normal at the object

point that is imaged at pixel x1 and the illumination vector and

where we have assumed that the two panels on the object

surface are at a 45◦ angle.

� So as the object is rotated, the image point in the 2D feature

space formed by the pixels (x1, x2) will travel a trajectory as

shown in the next figure. [Note that the beginning and the end points of the curve in

the feature space are not shown as being the same because we may not expect the reflectance

properties of the “back” of the object to be the same as those of the “front.”]
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x1

x
2

A

B

� The important point to note is that when the data points in a

feature space are as structured as shown in the figure above, we

cannot use Euclidean metric in that space as a measure of

similarity. Two points, such as A and B marked in the figure,

may have short Euclidean distance between them, yet they may

correspond to patterns that are far apart from the standpoint of

similarity.

� The situation depicted in the figure on the previous slide can be

described by saying that the patterns form a 1D manifold in an

otherwise 2D feature space. That is, the patterns occupy a

space that has, locally speaking, only 1 DOF.
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� It would obviously be an error to use linear methods like those

based on, say, PCA for data clustering in such cases.

� Let’s now add one more motion to the object in the imaging

setup shown on Slide 9. In addition to turning the object

around its long axis, we will also rock it up and down at its

“back” edge while not disturbing the “front” edge. The second

motion is depicted in the next figure.

� Let’s also now sample each image at three pixels, as shown in

the next figure.

Orthographic
Projection
Camera

Direction of
Illumination

x
2x

3

x
1

Random
Rotations

Random
Rocking

� Note again, the pixels do not correspond to fixed points on the

object surface. Rather, they are three pixels of certain
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prespecified coordinates in the images. So each image will be

now be represented by the following 3-vector:

~xi =





x1

x2

x3



 (1)

� We will assume that the data is generated by random rotations

and random rocking motions of the object between successive

image captures by the camera. Each image will now be one

point is a 3-dimensional space. Since the brightness values at

the pixels x1 and x3 will always be nearly the same, we will see

a band-like spread in the (x1, x3) plane. These images will now

form a 2D manifold in the 3D (x1, x2, x3) space as shown in the

figure below.

x3

x
2

x1
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� Another example of the data points being distributed on a

manifold is shown in the figure shown below. This figure

represents three-dimensional data that is sampled from a

two-dimensional manifold. [A manifold’s dimensionality is determined by asking the

question: How many independent basis vectors do I need to represent a point inside a local neighborhood on

the surface of the manifold?]

� To underscore the fact that using straight-line Euclidean

distance metric makes no sense when data resides on a

manifold, the distribution presented in the previous figure shows

two points that are connected by a straight-line distance and a

geodesic. The straight-line distance could lead to the wrong

conclusion that the points are close, but the geodesic distance

tells us that those two points are really rather far and may

correspond to two very different patterns if we are talking about

12
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feature spaces.

� In general, when data resides on a manifold in an otherwise

higher dimensional feature space, we want to compare

pattern similarity and establish neighborhoods by

measuring geodesic distances between the points.

� Again, in our discussion, a manifold will be a lower-dimensional

surface in a higher-dimensional space. And, the geodesic

distance between two points on a given manifold is

the shortest distance between the two points on the

manifold.

� As you know, the shortest distance between any two points on

the surface of the earth is along the great circle that passes

through those points. So the geodesic distances on the earth are

along the great circles.
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2: Thinking of a Nonlinear Manifold as a
Collection of Hyperplanes

� Since a nonlinear manifold is locally linear, we can think of each

data cluster on a nonlinear manifold as falling on a locally linear

portion of the manifold, meaning on a hyperplane.

� So our goal should be to find find a set of hyperplanes that best

describes the data, with each hyperplane derived from a local

data cluster.

� This would be like constructing a piecewise linear approximation

to data that falls on a curve as opposed to constructing a single

straight line approximation to all of the data.

� So whereas the frequently used PCA algorithm gives you a

single hyperplane approximation to all your data, what we want

to do is to calculate a set of hyperplane approximations, with

each hyperplane derived by applying the PCA algorithm locally

to a data cluster.

� That brings us to the problem of how to actually discover the

best set of hyperplane approximations to the data. What is

14
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probably the most popular algorithm today for that purpose is

based on the following key idea: Given a set of subspaces to

which a data element can be assigned, you assign it to that

subspace for which the reconstruction error is the least.

� But what do we mean by a subspace and what is

reconstruction error? These notions are explained in the

next section.
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3: Understanding the Notions of Subspace
and Reconstruction Error

� To understand the notions of subspace and reconstruction-error,

let’s revisit the traditional approach of dimensionality reduction

by the PCA algorithm.

� The PCA algorithm consists of: (1) Subtracting from each data

element the global mean of the data; (2) Calculating the

covariance matrix of the data; (3) Carrying out an

eigendecomposition of the covariance matrix and ordering the

eigenvectors according to decreasing values of the corresponding

eigenvalues; (4) Forming a subspace by discarding the trailing

eigenvectors whose corresponding eigenvalues are relatively

small; and, finally, (5) projecting all the data elements into the

subspace so formed.

� The error incurred in representing a data element by its

projection into the subspace is known as the reconstruction

error. This error is the projection of the data element into the

space spanned by the discarded trailing eigenvectors.

� In linear-manifold based machine learning, instead of

16
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constructing a single subspace in the manner described above,

we construct a set of subspaces, one for each data cluster on the

nonlinear manifold. After the subspaces have been constructed,

a data element is assigned to that subspace for which the

reconstruction error is the least.

� On the face of it, this sounds like a chicken-and-egg sort of a

problem: You need to have already clustered the data in order

to construct the subspaces at different places on the manifold so

that you can figure out which cluster to place a data element in.

� Such problems, when they do possess a solution, are best

tackled through iterative algorithms in which you start with a

guess for the final solution, you rearrange the measured data

on the basis of the guess, and you then use the new

arrangement of the data to refine the guess. Subsequently, you

iterate through the second and the third steps until you do

not see any discernible changes in the new arrangements of

the data.

� This forms the basis of the clustering algorithm that is described

under Phase 1 in the section that follows. This algorithm was

first proposed in the article “Dimension Reduction by Local

Principal Component Analysis” by Kambhatla and Leen that

appeared in the journal Neural Computation in 1997.
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4: The Basic Algorithm for Data Clustering
on a Manifold by Minimizing the

Reconstruction Error

� Let’s say we have N data points in a multidimensional space:

X =
{

xi

∣

∣

∣
i = 1, 2, ...., N

}

(2)

� Assume for a moment that this data has somehow been

partitioned into K disjoint clusters (say, because, we expect

there to be K clusters in the data — the problem is to find

them):

X = X1 ∪X2 ∪ . . . ∪XK

Xi ∩Xj = 0 i 6= j

(3)

� Let S =
{

Si i = 1, 2, ...., K
}

represent a set of K subspaces

that correspond to the clusters Xi, i = 1, K.

� The subspace Si is constructed by first calculating the mean

18
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and the covariance of the data points in Xi:

Ci =
1

Ni

Ni−1
∑

j=0

(xj − mi)(xj − mi)
T , xj ∈ Xi (4)

where mi is the cluster mean as given by

mi =
1

Ni

Ni−1
∑

i=0

xj, xj ∈ Xi (5)

� For constructing the subspace Si, we carry out an

eigendecomposition of the covariance matrix Ci and use the P

leading eigenvectors for defining the local coordinate frame for

the subspace Si.

� We will use the notation Wi
P to denote the matrix formed by

the P leading eigenvectors of Ci and the notation ✟
✟✟Wi
P to

denote the remaining (meaning the trailing) eigenvectors of Ci.

� For any data element xk ∈ X, the error in representing it by its

projection in the subspace Si is given by

e = ✟
✟Wi T
P (xk − mi) (6)

� We can write the following form for the square-magnitude of

this error:
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d2err(xk, Si) = ||~e||2 = ~eT~e

= (xk − mi)
T
✟
✟Wi
P✟

✟Wi T
P (xk − mi)

� Using the PCA spaces thus created from the initial partitioning

of the data in Eq. (3), let’s now re-partition the overall data X

into K clusters on the basis of the minimization of the error

function shown above. For this re-partioning step, we will use

the criterion presented below.

� Using the primed notation for the new clusters, we seek

X = X′
1 ∪X′

2 ∪ . . . ∪X′
K (7)

with

X′
i ∩X′

j = 0 i 6= j (8)

such that

X′
i =

{

xj

∣

∣ derr(xj,Si) < derr(xj,Sk), k 6= i
}

(9)

� We keep track of the reconstruction error incurred in assigning

each data element to its cluster and characterize each iteration

of the algorithm on the basis of the sum of these errors.
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� We stop the iterations when the change in these summed errors

falls below a threshold.
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5: Why a 2-Phase Approach to Clustering
by Minimization of the Reconstruction Error?

� Unfortunately, experiments show that the algorithm as

proposed by Kambhatla and Leen is much too sensitive to how

the clusters are seeded initially. One possible way to get around

this limitation of the algorithm is by using a two phased

approach as described below.

� In the first phase, you construct clusters but by looking for

more clusters than are actually present in the data. This

increases the odds that each original cluster will be visited by

one or more of the randomly selected seeds at the beginning.

� Subsequently, one can merge the clusters that belong together

in order to form the final clusters. That work can be done in the

second phase.

� For the cluster merging operation in the second phase, we can

model the clusters as the nodes of a graph in which the weight

given to an edge connecting a pair of nodes measures the

similarity between the two clusters corresponding to the two

nodes.
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� Subsequently, as described in Section 6, we can use a modern

graph partitioning algorithm to merge the most similar nodes in

our quest to partition the data into the desired number of

clusters. These algorithms require us to define pairwise

similarity between the nodes of the graph.

� With regard to the pairwise similarity matrix required by a

graph partitioning algorithm, we know that the smaller the

overall reconstruction error when all of the data elements in one

cluster are projected into the other’s subspace and vice versa,

the greater the similarity between two clusters. Additionally,

the smaller the distance between the mean vectors of the

clusters, the greater the similarity between two clusters. The

overall similarity between a pair of clusters is a combination of

these two similarity measures.
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6: Using Graph Partitioning for Merging
Small Clusters

� Before reading this section, you might want to go through the

very readable survey paper “A Tutorial on Spectral Clustering”

by Luxburg that appeared in the journal “Statistics and

Computing” in 2007. It is available for free download on the

web.

� As to the reason for why we need graph partitioning, as

mentioned earlier, a plain vanilla iterative implementation of the

logic of Section 4 results in clustering that is too sensitive to how

the clusters are initialized at the beginning of the first iteration.

[As the reader would recall, if you expect to see N clusters in your data, the clusters are initialized

by picking N data elements randomly to serve as cluster centers and then partitioning the rest of the

data on the basis of the least Euclidean distance from the randomly selected cluster centers.]

� As a hedge against this sensitivity to how the clusters are

initialized with random selection of cluster centers, we go for the

2-phased approach described in Section 4. If we expect to see,

say, K clusters in the data, in the first phase we actually look

for M ∗K clusters with M > 1 — with the expectation that

the random seeding of the M ∗K clusters will increase the odds

that every one of the actual K will be seen by at least one seed.
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� So our goal in Phase 2 is to apply a merging step to the M ∗K

clusters returned by Phase 1 so that we end up with just K

clusters we expect to see in the data.

� This is exactly the problem that is solved by the algorithms

described in the article by Luxburg mentioned at the beginning

of this section.

� What we want to do is to represent all of the clusters that are

output by Phase 1 as the nodes of a graph G = (V,E) in which

the set of nodes V = {v1, v2, ...., vn} stands for the clusters.

� Given a graph G, we associate with each edge {vi, vj} a

non-negative weight wi,j that tells us how similar node vi is to

node vj, meaning how similar the cluster indexed i is to the

cluster indexed j.

� In our context, we can base cluster-to-cluster similarity on two

considerations that are equally relevant to the problem at hand:

one based on the reconstruction error and the other based on

the distance between the means to the two clusters — as

explained on the next side.

� We say that smaller the overall reconstruction error when all of

the data elements in one cluster are projected into the other’s
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subspace and vice versa, the greater the similarity between two

clusters. And we say that the smaller the distance between the

mean vectors of the clusters, the greater the similarity between

two clusters. The overall similarity between a pair of clusters

can then be a combination of these two similarity measures.

� Should it happen that wi,j = 0, that means that the nodes vi
and vj are not connected.

� The matrix formed by these weights, denoted W , is called the

similarity matrix for the graph. (This matrix is also known as

the weighted adjacency matrix for a graph.)

� We associate with each node vi a degree di defined by

di =
∑n

j=1wi,j. We place all node degrees in an n× n diagonal

matrix D, called the degree matrix, whose ith element is di.

� The algorithms described in Luxburg’s article partition a graph

G into disjoint collections of nodes so that the nodes in each

collection are maximally similar, while, at the same time, the

collections are maximally dissimilar from one another. More

specifically, we want the total weight of the edges in each

collection to be as large as it can be, while, at the same time, we

want the total weight of the edges that are between the

collections to be as small as it can be.
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� All graph spectral clustering algorithms use the notion of a

graph Laplacian.

� Given the similarity matrix W and the degree matrix D as

defined above, the Laplacian of a graph G is defined as

L = D −W .

� The Laplacian of a graph as defined above has some very

interesting properties: (1) It is symmetric and positive

semidefinite; (2) Its smallest eigenvalue is always 0 and the

corresponding eigenvector a unit vector, meaning a vector all of

whose elements are 1’s; and (3) All of its eigenvalues are

non-negative. (See Luxburg’s paper for proofs.)

� My personal favorite algorithm for graph partitioning is the

Shi-Malik algorithm. It is based on the symmetric normalized

Laplacian defined as Lsym = D−1
2(D −W )D−1

2 . Just like the

Laplacian L, Lsym also possesses some very interesting

properties that you’ll see listed in Luxburg’s article.

� If we use W (G1, G2) =
∑

u∈G1,v∈G2
wu,v to denote the total

similarity weight in the edges that connect any of the nodes in

G1 with any of the nodes in G2, and if we use

vol(Gi) =
∑

v∈Gi
dv to denote the total similarity weight

emanating from all the nodes in the partition Gi, the Shi-Malik

algorithm can be used to optimally bipartition G using the

27



Manifold Learning by Avi Kak

eigenvector of Lsym that corresponds to the second smallest

eigenvalue. This bipartition minimizes the normalized graph

cut:

Ncut(H, H̄) =
W (H, H̄)

vol(H)
+

W (H, H̄)

vol(H̄)
(10)

� Finer partitions of a graph can be created by invoking the

Shi-Malik algorithm recursively.
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7: Summary of the Overall Algorithm

� I will now present a summary of the two phases of the algorithm

implemented in my Perl module that is presented in the next

section.

In what follows, an important role is played by what we will

later refer to as the constructor parameter

cluster search multiplier. It is only when the integer

value given to this parameter is greater than 1 that Phase 2 of

the algorithm kicks in. In this summary presentation, this

parameter will be denoted M . We will also use the parameter

P to denote the dimensionality of the manifold.

PHASE 1: In this phase, we invoke the algorithm described

in Section 4 to partition the data into clusters. The number of

clusters formed is the product of K, which is the number of

clusters expected by the user, and the parameter M mentioned

above to induce over clustering of the data.

Step 1: Randomly choose M ∗K data elements to serve as the seeds for that many
clusters.

Step 2: Construct initial M ∗K clusters by assigning each data element to that
cluster whose seed it is closest to.

Step 3: Calculate the mean and the covariance matrix for each of the M ∗K clusters
and carry out an eigendecomposition of the covariance matrix. Order the
eigenvectors in decreasing order of the corresponding eigenvalues. The first P
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eigenvectors define the subspace for that cluster. Use the space spanned by the
remaining eigenvectors — we refer to them as the trailing eigenvectors — for
calculating the reconstruction error.

Step 4: Taking into account the mean associated with each cluster, re-cluster the
entire data set on the basis of the least reconstruction error. That is, assign each
data element to that subspace for which it has the smallest reconstruction error.
Calculate the total reconstruction error associated with all the data elements.
(See the definition of the reconstruction error in Section 4.)

Step 5: Stop iterating if the change in the total reconstruction error from the previous
iteration to the current iteration is less than the value specified by the constructor
parameter delta reconstruction error. Otherwise, go back to Step 3.

PHASE 2: This phase of the algorithm uses graph

partitioning to merge the M ∗K clusters back into the K

clusters you expect to see in your data. Since the algorithm

whose steps are presented below is invoked recursively, let’s

assume that we have N clusters that need to be merged by

invoking the Shi-Malik spectral clustering algorithm as

described below:

Step 1: Form a graph whose N nodes represent the N clusters. (For the very first
invocation of this step, we have N = M ∗K.)

Step 2: Construct an N ×N similarity matrix for the graph. The (i, j)-th element of
this matrix is the similarity between the clusters indexed i and j. Calculate this
similarity using two criteria: (1) The total reconstruction error when the data
elements in the cluster indexed j are projected into the subspace for the cluster
indexed i and vice versa. And (2) The distance between the mean vectors
associated with the two clusters.

Step 3: Calculate the symmetric normalized Laplacian of the similarity matrix. We
use A to denote the symmetric normalized Laplacian.

Step 4: Do eigendecomposition of the A matrix and choose the eigenvector
corresponding to the second smallest eigenvalue for bipartitioning the graph on
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the basis of the sign of the values in the eigenvector.

Step 5: If the bipartition of the previous step yields one-versus-the-rest kind of a
partition, add the ‘one’ cluster to the output list of clusters and invoke graph
partitioning recursively on the ‘rest’ by going back to Step 1. On the other hand,
if the cardinality of both the partitions returned by Step 4 exceeds 1, invoke
graph partitioning recursively on both partitions. Stop when the list of clusters in
the output list equals K.

Step 6: In general, the K clusters obtained by recursive graph partitioning will not
cover all of the data. So, for the final step, assign each data element not covered
by the K clusters to that cluster for which its reconstruction error is the least.

� The 2-Phase algorithm described in this section is implemented

in the Perl module described in the next section.
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8: The Perl Module
Algorithm::LinearManifoldDataClusterer-1.01

� The goal of this section is to introduce the reader to some of the

more important functions in my Perl module

Algorithm::LinearManifoldDataClusterer that can be

downloaded from

http://search.cpan.org/~avikak/Algorithm-LinearManifoldDataClusterer-1.0/lib/Algorithm/LinearManifoldDataClusterer.pm

� Please read the documentation at the CPAN site for the API of

this software package.

� The module defines two classes: LinearManifoldDataClusterer and

DataGenerator, the former for clustering data on nonlinear

manifolds by assuming to be piecewise linear and the latter for

generating synthetic data for experimenting with the clusterer.

� The data file presented to the module must be in CSV format

and each record in the file must include a symbolic tag for the

record. Here is an example of what a typical data file would

look like:

d_161,0.0739248630173239,0.231119293395665,-0.970112873251437

a_59,0.459932215884786,0.0110216469739639,0.887885623314902
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a_225,0.440503220903039,-0.00543366086464691,0.897734586447273

a_203,0.441656364946433,0.0437191337788422,0.896118459046532

...

...

What you see in the first column — d 161, a 59, a 225, a 203,

.. — are the symbolic tags associated with four 3-dimensional

data records.

� The module also expects that you will supply a mask that

informs the module as to which columns of the numerical data

it should use for clustering. An example of a mask when the

first column contains the symbolic tag and the next three

columns the numerical data would be N111.

� In order to use the module for clustering, you must first create

an instance of the clusterer though a call like this:

my $clusterer = Algorithm::LinearManifoldDataClusterer->new(

datafile => $datafile,

mask => $mask,

K=> 3,

P=> 2,

max_iterations => 15,

cluster_search_multiplier => 2,

delta_reconstruction_error => 0.001,

terminal_output => 1,

visualize_each_iteration => 1,

show_hidden_in_3D_plots => 1,

make_png_for_each_iteration => 1,

);
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� In the constructor call shown on the previous slide, the

parameter K specifies the number of clusters you expect to find

in your data and the parameter P is the dimensionality of the

manifold on which the data resides. The parameter

cluster_search_ multiplier is for increasing the odds that

the random seeds chosen initially for clustering will populate all

the clusters. Set this parameter to a low number like 2 or 3.

The parameter max_iterations places a hard limit on the

number of iterations that the algorithm is allowed. The actual

number of iterations is controlled by the parameter

delta_reconstruction_error. The iterations stop when the

change in the total “reconstruction error” from one iteration to

the next is smaller than the value specified by

delta_reconstruction_error.

� After the constructor call, you can read in the data and initiate

clustering, as shown on the next slide.

� You get the module to read the data for clustering through the

following call:

$clusterer->get_data_from_csv();

� Now you can invoke linear manifold clustering by:

my $clusters = $clusterer->linear_manifold_clusterer();
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The value returned by this call is a reference to an array of

anonymous arrays, with each anonymous array holding one

cluster. If you wish, you can have the module write the clusters

to individual files by the following call:

$clusterer->write_clusters_to_files($clusters);

� If you want to see how the reconstruction error changes with the

iterations, you can make the call:

$clusterer->display_reconstruction_errors_as_a_function_of_iterations();

When your data is 3-dimensional and when the clusters reside

on a surface that is more or less spherical, you can visualize the

clusters by calling

$clusterer->visualize_clusters_on_sphere(‘‘final clustering’’, $clusters);

where the first argument is a label to be displayed in the 3D

plot and the second argument the value returned by calling

linear_ manifold_clusterer().
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9: Fail-First Bias of the Module

� As you would expect for all such iterative algorithms, the

module carries no theoretical guarantee that it will give you

correct results.

� But what does that mean?

� Suppose you create synthetic data that consists of Gaussian

looking disjoint clusters on the surface of a sphere, would the

module always succeed in separating out the clusters? The

module carries no guarantees to that effect — especially

considering that Phase 1 of the algorithm is sensitive to how the

clusters are seeded at the beginning.

� Although this sensitivity is mitigated by the cluster merging

step when greater-than-1 value is given to the constructor

option cluster_search_multiplier, a plain vanilla

implementation of the steps in Phase 1 and Phase 2 would

nonetheless carry significant risk that you’ll end up with

incorrect clustering results.

� To further reduce this risk, the module has been programmed so
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that it terminates immediately if it suspects that the cluster

solution being developed is unlikely to be fruitful.

� The heuristics used for such terminations are conservative —

since the cost of termination is only that the user will have to

run the code again, which at worst only carries an element of

annoyance with it.

� The three “Fail First” heuristics currently programmed into the

module are based on simple “unimodality testing”, testing for

“congruent clusters,” and testing for dominant cluster support

in the final stage of the recursive invocation of the graph

partitioning step.

� The unimodality testing is as elementary as it can be — it only

checks for the number of data samples within a certain radius of

the mean in relation to the total number of data samples in the

cluster.

� When the program terminates under such conditions, it prints

out the following message in your terminal window:

Bailing out!

� Given the very simple nature of testing that is carried for the

“Fail First” bias, do not be surprised if the results you get for
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your data simply look wrong. If most runs of the module

produce wrong results for your application, that means that the

module logic needs to be strengthened further. I would love to

hear from you if that is the case.
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10: Some Results Obtained with the Perl
Module

Algorithm::LinearManifoldDataClusterer

� This section presents some results obtained with the

Algorithm::LinearManifoldDataClusterer module. In this

tutorial, I will show manifold based clustering results obtained

with the first two of the following four canned scripts that you

will find in the examples directory of the module:

example1.pl

example2.pl

example3.pl

example4.pl

� These scripts use the following data files that are also in the

examples directory:

3_clusters_on_a_sphere_498_samples.csv (used in example1.pl and example4.pl)

3_clusters_on_a_sphere_3000_samples.csv (used in example2.pl)

4_clusters_on_a_sphere_1000_samples.csv (used in example3.pl)

� With regard to the data files listed on the previous slide, even

though the first two of these files both contain exactly three
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clusters, the clusters look very different in the two data files.

The clusters are much more spread out in

3_clusters_on_a_sphere_3000_ samples.csv.

� The code in example4.pl is special because it shows how you

can call the auto_retry_ clusterer() method of the module

for automatic repeated invocations of the clustering program

until success is achieved. [The value of the constructor parameter

cluster search multiplier is set to 1 in example4.pl, implying that when you execute

example4.pl you will not be invoking Phase 2 of the algorithm. You might wish to change the value

given to this parameter to see how it affects the number of attempts needed to achieve success.]

� We will start with the results obtained with the script

example1.pl. We use the following constructor parameters in

this script:

K => 3, # number of clusters

P => 2, # manifold dimensionality

max_iterations => 15,

cluster_search_multiplier => 2,

delta_reconstruction_error => 0.001,

� Note, in particular, the value of 2 given to the parameter

cluster search multiplier. This implies that Phase 1 of

the algorithm will look for 6 clusters. Subsequently, in Phase

2, these would go through a merging step to yield the final 3

clusters.
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� The next four figures show: (1) The initial clustering of the data

at the outset of the iterations when the cluster centers are

chosen randomly; (2) Clustering results after 3 iterations of the

Phase 1 algorithm; (3) Clustering achieved after the merge

operation of Section 5; and (4) The final result.
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� The results shown next were obtained with the example2.pl in

the examples directory of the module. As mentioned

previously, this script uses the data that is in the file

3 clusters on a sphere 3000 samples.csv.

� The example2.pl script uses the following constructor

parameters:

K => 3, # number of clusters

P => 2, # manifold dimensionality

max_iterations => 15,

cluster_search_multiplier => 2,

delta_reconstruction_error => 0.012,

which, except for the value given to delta reconstruction error, are

the same as for example1.pl. [IMPORTANT: In general, the

value you would need to give to delta reconstruction error would
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be larger, the larger number of data samples that need to be

clustered.] In this case, we have 3000 samples.

� Since the value given to the parameter cluster search multiplier is

2, this implies that Phase 1 of the algorithm will look for 6

clusters. Subsequently, in Phase 2, these would go through a

merging step to yield the final 3 clusters.

� The next four figures show: (1) The initial clustering of the data

at the outset of the iterations when the cluster centers are

chosen randomly; (2) Clustering results after 3 iterations of the

Phase 1 algorithm; (3) Clustering achieved after the merge

operation of Section 5; and (4) The final result.
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PART II

A Review of the ISOMAP and LLE
Algorithms

Part II of this tutorial is based on (1) “A Global Geometric Framework for

Nonlinear Dimensionality Reduction,” by Tenenbaum, de Silva, and

Lengford, Science, Dec. 2000; (2) “Nonlinear Dimensionality Reduction by

Locally Linear Embedding,” by Roweis and Saul, Science, Dec. 2000; and

(3) other related publications by these authors.
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11: Calculating Manifold-based Geodesic
Distances from Measurement-Space Distances

� We will now address the following problem regarding the

measurement of distances on a manifold: How to calculate the

geodesic distances between any two given points on the

manifold?

� Theoretically, the problem can be stated in the following

manner:

� Let M be a d-dimensional manifold in the Euclidean space RD.

Let’s now define a distance metric between any two points ~x

and ~y on the manifold by

dM(~x, ~y) = inf
γ
{ length(γ) } (11)

where γ varies over the set of arcs that connect ~x and ~y on the

manifold. [The infimum of a set means to return an element that

stands for the greatest lower bound vis-a-vis all the elements in the set. In

our case, the set consists of the length values associated with all the arcs

that connect ~x and ~y. The infimum returns the smallest of these length

values.] [If the definition of infimum sounds a bit confusing, the consider a function

f : RD
→ R that maps the domain to the open interval (2.0, 5.0) in the range of the function.
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Values such as 1.8, 1.9, 1.999 would all be valid lower bounds on the interval. The GREATEST

LOWER BOUND would be 2.0. Therefore, infimum for the range interval in question is 2.0.]

� Our goal is to estimate dM(~x, ~y) given only the set of points

{~xi} ⊂ RD. We obviously have the ability to compute the

pairwise Euclidean distances ‖ ~x, ~y ‖ in RD.

� We want to use the fact that when the data points are very

close together according to, say, the Euclidean metric, they

are also likely to be close together on the manifold (if one is

present in the feature space).

� It is only the medium to large Euclidean distances that cannot

be trusted when the data points reside on a manifold.

� So we can make a graph of all of the points in a feature space in

which two points will be directly connected only when the

Euclidean distance between them is very small.

� To capture this intuition, we define a graph G = {V,E} where

the set V is the same as the set of data points {~xi} and in

which {~xi, ~xj} ∈ E provided ‖ ~xi, ~xj ‖ is below some threshold.

� We next define the following two metrics on the set of measured
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data points. For every ~x and ~y in the set {~xi}, we define:

dG(~x, ~y) = min
P

(‖ x0 − x1 ‖ + . . . + ‖ xp−1 − xp ‖)

dS(~x, ~y) = min
P

(dM(x0, x1) + . . . + dM(xp−1, xp))

where the path P = (~x0 = ~x, ~x1, ~x2, . . . ~xp = ~y) varies over all

the paths along the edges of the graph G.

� As previously mentioned, our real goal is to estimate dM(~x, ~y).

We want to be able to show that dG ≈ dM . We will establish

this approximation by first demonstrating that dM ≈ dS and

then that dS ≈ dG.

� To establish these approximations, we will use the following

inequalities:

dM(~x, ~y) ≤ dS(~x, ~y)

dG(~x, ~y) ≤ dS(~x, ~y)

The first follows from the triangle inequality for the metric dM .

The second inequality holds because the the Euclidean distances

‖ ~xi − ~xi+1 ‖ are smaller than the arc-length distances

dM(~xi, ~xi+1).

� The proof of the approximation dM ≈ dG is based on

demonstrating that dS is not too much larger than dM and that

dG is not too much smaller than dS.
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12: The ISOMAP Algorithm for Estimating
the Geodesic Distances

� The ISOMAP algorithm can be used to estimate the geodesic

distances dM(~x, ~y) on a lower-dimensional manifold that is

inside a higher-dimensional Euclidean measurement space RD.

� ISOMAP consists of the following steps:

1. Construct Neighborhood Graph: Define a graph G over all the
set {~xi} of all data points in the underlying D-dimensional features
space RD by connecting the points ~x and ~y if the Euclidean

distance ‖ ~x− ~y ‖ is smaller than a pre-specified ǫ (for ǫ-ISOMAP).
In graph G, set edge lengths equal to ‖ ~x− ~y ‖.

2. Compute Shortest Paths: Use Floyd’s algorithm for computing
the shortest pairwise distances in the graph G:

– Initialize dG(x, y) =‖ x− y ‖ if {x, y} is an edge in in graph G.

Otherwise set dG(x, y) = ∞.

– Next, for each node z ∈ {xi}, replace all entries dG(x, y) by
min{dG(x, y), dG(x, z) + dG(z, y)}.

– The matrix of final values DG = {dG(x, y)} will contain the

shortest path distances between all pairs of nodes in G.
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3. Construct d-dimensional embedding: As explained in the next
section, apply the classical MDS (Multidimensional Scaling) to the

matrix of graph distances DG and construct an embedding in a
d-dimensional Euclidean space Y that best preserves the manifold’s

estimated intrinsic geometry.
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13: ISOMAP: Using MDS along with DM

Distances to Construct Lower-Dimensional
Representation for the Data

� MDS finds a set of vectors, called embeddings, that span a

lower d-dimensional space such that the matrix of pairwise

Euclidean distances between them in this new space

corresponds as closely as possible to the similarities expressed

by the manifold distances dM(x,y).

� Let this new d-dimensional embedding space be represented by

Rd. Our goal is to map the dataset {xi} from the measurement

Euclidean space RD into the embedding space Rd, also

Euclidean.

� For convenience of notation, let ~x and ~y represent two arbitrary

points in RD and also the corresponding points in in the target

space Rd.

� Our goal is to find the d basis vector for Rd such that following

cost function is minimized:

E = ‖ DM − DRd ‖F (12)
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where DRd(~x, ~y) is the Euclidean distance between mapped

points ~x and ~y and where ‖‖F is the Frobenius norm of a

matrix. Recall that for N measured data points in RD, both

DM and DRd will be N ×N . [For a matrix A, its Frobenius norm is given

by ‖ A ‖F =
√

∑

i,j |Aij |2 ] [Note that the difference DM − DRd possesses a

matrix-like structure in which the (i, j)th-element is the scalar difference between the

distance values DM (xi,yj)−DRd(xi,yj), where xi and yj are two different points in the

domain RD and where we have taken the liberty to use the same symbols for their

corresponding points in the range Rd. For example, the values in the first row of the

matrix would be differences of the distances between x0, on the one hand, and y0, y1,

y2, etc., on the other. So we can talk about the Frobenius norm of this matrix.]

� In MDS algorithms, it is more common to minimize the

normalized

E =
‖ DM − DRd ‖F

‖ DM ‖F
(13)

Quantitative psychologists refer to this normalized form as

stress.

� A classical example of MDS is to start with a matrix of pairwise

distances between a set of cities and to then ask the computer to

situate the cities as points on a plane so that visual placement

of the cities would be in proportion to the inter-city distances.

� For algebraic minimization of the cost function, the cost
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function is expressed as

E = ‖ τ(DM) − τ(DRd) ‖F (14)

where the τ operator coverts the distances to inner products.

� It can be shown that the solution to the above minimization

consists of the using the largest d eigenvectors of the sampled

τ (DM) (or, equivalently, the estimated approximation τ (DG))

as the basis vectors for the reduced dimensionality

representation of Rd.

� The intrinsic dimensionality of a feature space is found by

creating the reduced dimensionality mappings to Rd for

different values of d and retaining that value for d for which the

residual E remains more or less the same as d is increased

further.

� When ISOMAP is applied to the synthetic Swiss roll data

shown in the figure on page 12, we get the plot shown by the

tiny filled circles in the upper right-hand plate of the next figure

that is also from the publication by Tenenbaum et al. As you

can see, when d = 2, E goes to zero, as it should — since the

intrinsic dimensionality of the data is 2. The other curve in the

same plate is for PCA.
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� For curiosity’s sake, the graph constructed by ISOMAP from

the Swiss roll data is shown in the following figure:

� In summary, ISOMAP creates a low-dimensional Euclidean
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representation, called an embedding, from a measurement space

in which the data resides on a manifold surface which may be a

folded or a twisted surface.

� The other plots in the figure on the previous page are for the

other datasets for which Tenenbaum et al. have demonstrated

the power of the ISOMAP algorithm for dimensionality

reduction.

� Tenenbaum et al. also experimented with a dataset consisting of

64× 64 images of a human head (a statue head). The images

were recorded with three parameters, left-to-right orientation of

the head, top-to-bottom orientation of the head, and by

changing the direction of illumination from left to right. Some

images from the dataset are shown in the figure below. One can

claim that even when you represent the images by vectors in

R4096, the dataset has only three DOF intrinsically. This is

borne out by the output of ISOMAP shown in the upper-left of

the plots on the previous page.
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� Another experiment by Tenenbaum et al. involved a dataset

consisting of 64× 64 images of a human hand with two

“intrinsic” degrees of freedom: one created by the rotation of

the wrist and other created by the unfolding of the figures. The

measurement space in this case is again R4096. Some of the

images in the dataset are shown in the figure below.
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The lower-left plate in the plots on page 56 corresponds to this

dataset.

� Another experiment carried out by Tenenbaum et al. used 1000

images of handwritten 2’s, as shown in the figure below. Two

most significant features of how most humans write 2’s are

referred to as the “bottom loop articulation” and the “top arch

articulation”. The authors say they did not expect a constant

low-dimensionality to hold over the entire dataset.
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14: Computational Issues Related to
ISOMAP

� ISOMAP calculation is nonlinear because it requires

minimization of a cost function — an obvious disadvantage

vis-a-vis linear methods like PCA that are simple to implement.

� In general, it would require much trial and error to determine

the best thresholds to use on the pairwise distances D(~x, ~y) in

the measurement space. Recall that when we construct a graph

from the data points, we consider two nodes directly connected

when the Euclidean distance between them is below a threshold.

� ISOMAP assumes that the same distance threshold would apply

everywhere in the underlying high-dimensional measurement

space RD.

� ISOMAP also assumes implicitly that the same manifold would

be a good fit for all of the measured data.
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15: Dimensionality Reduction by Locally
Linear Embedding (LLE)

� This is also a nonlinear approach, but does not require a global

minimization of a cost function.

� LLE is based on the following two notions:

– When data resides on a manifold, any single data vector can be

expressed as a linear combination of its K closest neighbors using a

coefficient matrix whose rank is less than the dimensionality of the

measurement space RD.

– The reconstruction coefficients discovered in expressing a data point in

terms of its neighbors on the manifold can then be used directly to

construct a low-dimensional Euclidean representation of the original

measured data.
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16: LLE: Estimating the Weights for Locally
Linear Embedding of the Measurement Space

Data Points

� Let ~xi be the i
th data point in the measurement space RD and

let {~xj|j = 1 . . .K} be its K closest neighbors according to the

Euclidean metric for RD, as depicted in the figure below.

x3

x
2

x1

x i

� The fact that a data point can be expressed as a linear

combination of its K closest neighbors can be expressed as

~xi =
∑

j

wij~xj (15)
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The equality in the above relationship is predicated on the

assumption that the K closest data points are sufficiently

linearly independent in a coordinate frame that is local to the

manifold at xi.

� In order to discover the nature of linear dependency between the

data point ~xi on the manifold and its K closest neighbors, it

would be more sensible to minimize the following cost function:

Ei = ‖ ~xi −
∑

j

wij~xj ‖
2 (16)

� Since we will be performing the same calculations each

measured data point ~xi, in the rest of the discussion we will

drop the suffix i and let ~x stand for any arbitrary data point on

the manifold. So for a given ~x, we want to find the best weight

vector ~w = (w1, . . . , wK) that would minimize

E(~w) = ‖ ~x −
∑

j

wj~xj ‖
2 (17)

� In the LLE algorithm, the weights ~w are found subject to the

condition that
∑

j wj = 1. This constraint — a sum-to-one

constraint — is merely a normalization constraint that expresses

the fact that we want the proportions contributed by each of

the K neighbors to any given data point to add up to one.
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� We now re-express the cost function at a given measured point

~x as

E(~w) = ‖ ~x −
∑

j

wj~xj ‖
2

= ‖
∑

j

wj(~x − ~xj) ‖
2

where the second equality follows from the sum-to-unity

constraint on the weights wj at all measured data points.

� Let’s now define a local covariance at the data point ~x by

Cjk = (~x − ~xj)
T (~x − ~xk) (18)

The local covariance matrix C is obviously an K ×K matrix

whose (j, k)th element is given by inner product of the

Euclidean distance between ~x and ~xj, on the one hand, and the

distance ~x and ~xk, on the other.

� In terms of the local covariance matrix, we can write for the

cost function at a given measured data point ~x:

E =
∑

j,k

wjwkCjk (19)

� Minimization of the above cost function subject to the

constraint
∑

j wj = 1 using the method of Lagrange multipliers
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gives us the following solution for the coefficients wj at a given

measured data point:

wj =

∑

k C
−1

jk
∑

i

∑

j C
−1

ij

(20)
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17: LLE: Invariant Properties of the
Reconstruction Weights

� The reconstruction weights, as represented by the matrix W of

the coefficients at each measured data point ~x, are invariant to

the rotations of the measurement space. This follows from the fact

that the scalar products that form the elements are of the local covariance

matrix involve products of Euclidean distances in a small neighborhood

around each data point. Those distances are not altered by rotating the

entire manifold.

� The reconstruction weights are also invariant to the translations of the

measurement space. This is a consequence of the sum-to-one constraint on

the weights.

� We can therefore say “that the reconstruction weights characterize the

intrinsic geometrical properties in each neighborhood, as opposed to

properties that depend on a particular frame of reference.”
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18: LLE: Constructing a Low-Dimensional
Representation from the Reconstruction

Weights

� The low-dimensional reconstruction (the embedding) is based

on the idea we should use the same reconstruction weights that

we calculated on the manifold — that is, the weight represented

by the vector ~w at each data point — to reconstruct the

measured data point in a low dimensional space.

� Let the low-dimensional representation of each measured data

point ~xi be ~yi. LLE is founded on the notion that the previously

computed reconstruction weights will suffice for constructing a

representation of each ~yi in terms of its K nearest neighbors.

� That is, we place our faith in the following equality in the

to-be-constructed low-dimensional space:

~yi =
∑

j

wij~yj (21)

But, of course, so far we do not know what these vectors ~yi are.

So far we only know how they should be related.
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� We now state the following mathematical problem: Considering

together all the measured data points, find the best

d-dimensional vectors ~yi for which the following global cost

function is minimized

Φ =
∑

i

|~yi −
∑

j

wij~yj|
2 (22)

If we assume that we have a total of N measured data points,

we need to find N low-dimensional vectors ~yi by solving the

above minimization.

� The form shown above can be re-expressed as

Φ =
∑

i

∑

j

Mij~y
T
i ~yj (23)

where

Mij = δij − wij − wji +
∑

k

wkiwkj (24)

where δij is 1 when i = j and 0 otherwise.

� As it is, the above minimization is ill-posed unless the following

two constraints are also used.

� We eliminate one degree of freedom in specifying the origin of

the low-dimensional space by specifying that all of the new N
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vectors ~yi taken together be centered at the origin:

∑

i

~yi = 0 (25)

� We require that the embedding vectors have unit variance with

outer products that satisfy:

1

N

∑

i

~yi~y
T
i = I (26)

where I is a d× d identity matrix.

� The minimization problem is solved by computing the trailing

d+ 1 eigenvectors of the M matrix and then discarding the last.

The remaining d eigenvectors are the solution we are looking

for. Each eigenvector has N components. When we arrange

these eigenvectors in the form of a d×N matrix, the column

vectors of the matrix are the N vectors ~yi we are looking for.

Recall N is the total number of measured data points.
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19: Some Examples of Dimensionality
Reduction with LLE

� In the example shown in the figure below, the measured data

consists of 600 samples taken from an Swiss roll manifold. The

calculations for mapping the measured data to a

two-dimensional space was carried out with K = 12. That is,

the local intrinsic geometry at each data point was calculated

from the 12 nearest neighbors.

� The next example was constructed from 2000 images

(N = 2000) of the same face, with each image represented by a

20× 28 array of pixels. Therefore, the dimensionality of the

measurement space is 560. The parameter K was again set to 12

for determining the intrinsic geometry at each 560 dimensional

data point. The figure shows a 2-dimensional embeddings

constructed from the data. Representative faces are shown next

to circled points. The faces at the bottom correspond to the

solid trajectory in the upper right portion of the figure.
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